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Dynamic behavior of driven interfaces in models with two absorbing states
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We study the dynamics of an interface~active domain! between different absorbing regions in models with
two absorbing states in one dimension: probabilistic cellular automata models and interacting monomer-dimer
models. These models exhibit a continuous transition from an active phase into an absorbing phase, which
belongs to the directed Ising~DI! universality class. In the active phase, the interface spreads ballistically into
the absorbing regions and the interface width diverges linearly in time. Approaching the critical point, the
spreading velocity of the interface vanishes algebraically with a DI critical exponent. Introducing a symmetry-
breaking fieldh that prefers one absorbing state over the other drives the interface to move asymmetrically
toward the unpreferred absorbing region. In Monte Carlo simulations, we find that the spreading velocity of
this driven interface shows a discontinuous jump at criticality. We explain that this unusual behavior is due to
a finite relaxation time in the absorbing phase. The crossover behavior from the symmetric case~DI class! to
the asymmetric case~directed percolation class! is also studied. We find the scaling dimension of the
symmetry-breaking fieldyh51.21(5). @S1063-651X~99!05805-5#

PACS number~s!: 64.60.Ht, 02.50.2r, 05.70.Fh
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Universality classes of one-dimensional models exhi
ing a continuous phase transition from an active phase
an absorbing phase with multiple absorbing states are d
mined by the symmetry between the absorbing states@1–5#.
If the absorbing phase consists of two equivalent absorb
states, the phase transition belongs to the directed Ising~DI!
universality class@2–9#. When the symmetry between th
two absorbing states is broken, one absorbing state beco
completely obsolete and the system crosses over to the
rected percolation~DP! universality class@1–5#. This cross-
over has been observed in many models with two absorb
states, including the probabilistic cellular automata~PCA!
model @6# and the interacting monomer-dimer~IMD ! model
@7# in one dimension.

Dynamic properties of an active domain in the sea of
absorbing region are well known for models with a sing
absorbing state, which belong to the DP universality cl
@10#. The size of the active domainR in one dimension is
defined as the distance between the two farthest active
averaged over surviving samples and satisfies the dyna
scaling relation

R~ t,D!5t1/zf ~Dt1/n i!, ~1!

where t is the time,D the reduced external parameter,z
5n i /n' the dynamic exponent@11#, andn i (n') the relax-
ation time~correlation length! exponent.

In the active phase (D.0), the active domain spread
ballistically with a finite velocity and its size diverges lin
early in time. Sof (x) must scale asxn i2n' in the x→1`
limit. Therefore the asymptotic value of the spreading vel
ity, v5 limt→`R/t, scales as

v~D!;Dn i2n'. ~2!

At criticality (D50), the active domain spreads algebr
ically in time, R(t,0);t1/z, with the scaling functionf (0)
being a constant. In the absorbing phase (D,0), the active
PRE 591063-651X/99/59~5!/4949~4!/$15.00
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domain diffuses like a random walker but its size converg
to a finite value of order of the correlation length. Sof (x)
must scale as (2x)2n' in the x→2` limit. Therefore, the
size of the active domain in the long time limit scales as

R~`,D!;~2D!2n', ~3!

and the spreading velocityv50 for D<0.
For models with two absorbing states, one can cons

the dynamics of an active domain in two different enviro
ments, i.e., in the sea of one absorbing region~defect dynam-
ics! and between two different absorbing regions~interface
dynamics! @2,4,7,9#. The defect dynamics describe th
spreading of a defect~active domain! in a nearly absorbing
space, while the interface dynamics describe the spreadin
an interface~active domain! between two different absorbin
regions. Note that the interface cannot disappear by itse
contrast to the defect.

For the symmetric case, the system belongs to the
universality class and the active domain~defect or interface!
behaves similarly in both dynamics. In the active phase,
spreading velocity scales as in Eq.~2! with the DI critical
exponents. At criticality, the size of the active domain gro
as R(t,0);t1/z with the DI dynamic exponentz. In the ab-
sorbing phase, the active domain splits into two branch
which diffuse like two random walkers before they meet a
annihilate each other. The absorbing domain of the type
ferent from the absorbing sea emerges between the two
tive branches. The width of each branch should scale a
Eq. ~3! with the DI exponent but the size of the active d
main defined as the distance between the two farthest ac
sites must be of order of the distance between two rand
walkers. So it diverges with the random walk~RW! dynamic
exponent,R;t1/zRW with zRW52.

With a symmetry-breaking field that prefers one abso
ing state over the other, the system crosses over to the
universality class. The active domain~defect! in the sea of
4949 ©1999 The American Physical Society
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the preferred absorbing region behaves in exactly the s
way as in the defect dynamics of models with a single
sorbing state, because the probability of creating the un
ferred absorbing domain is exponentially small. The spre
ing velocity in the active phase scales as in Eq.~2! with the
DP exponents, and the defect size in the absorbing ph
scales as in Eq.~3! with the DP exponent.

However, the dynamics of the active domain~interface!
between the preferred and the unpreferred absorbing re
are completely different. The interface is now driven into t
unpreferred absorbing region by the symmetry-break
field. In the active phase, the interface spreads ballisticall
both directions. Of course, the interface front near the p
ferred absorbing region (P-interface front! moves slower
than the interface front near the unpreferred absorbing re
(U-interface front!. The unpreferred absorbing state is n
responsible for the absorbing phase transition and its re
always tends to shrink against the preferred absorbing
gion. So the dynamic behavior of theU-interface front is
always ballistic even in the absorbing phase and at critica
TheU-interface front velocity,vU , varies smoothly with the
external parameterD and there is no singularity at the critica
point. TheP-interface front behaves like a boundary of t
active domain in the sea of the preferred absorbing reg
~defect dynamics!. TheP-interface front velocity,vP , scales
as in Eq.~2! with the DP exponents in the active phase.
criticality, the P-interface front behaves in a critical fashio
of the DP type. The average spreading distance of
P-interface front from its initial position scales algebraica
as t1/z with the DP dynamic exponentz @2#. However, the
size of the active domain~interface width! is the average
distance between theU-interface front and theP-interface
front, so it still diverges ballistically even at criticality
R(t,0).vUt.

As we cross the critical point into the absorbing phase,
interesting thing happens. In the absorbing phase, the in
face still grows ballistically into the unpreferred absorbi
region with a finite value ofvU , but the preferred absorbin
state dominates the system and tries to confine the inter
within a finite region like the active domain in the DP sy
tems. We expect that theP-interface front moves asymptot
cally with the same velocity and the same direction as
U-interface front in the entire absorbing phase. ThenvP must
have a finite jump at the absorbing phase transition and
interface width must be finite in the long time limit.

In this paper, we study numerically the dynamics of the
driven interfaces in the PCA model and the IMD model w
a symmetry-breaking field. We perform dynamic Mon
Carlo simulations to measure the interface width and
spreading velocities of the two interface fronts. Indeed,
find a discontinuous jump ofvP at criticality and an interest
ing scaling behavior of the interface width near the tran
tion.

The PCA model studied here was originally introduced
Grassberger, Krause, and von der Twer@6#. The model
evolves with elementary rule number 94 in the notation
Wolfram @12# except for 110 and 011 configurations, whe
the central spin 1 flips to 0 with probabilityp and remains
unflipped with probability 12p. This model has two equiva
lent absorbing states, i.e., (1010 . . . ) and (0101 . . . ), and
exhibits an absorbing phase transition that belongs to the
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universality class. We introduce a symmetry-breaking fielh
that prefers (1010 . . . ) over (0101 . . . ) @2#. With probabil-
ity h, we reject the flipping attempt of the central spin in t
111 configuration when it is at an odd-numbered site. As
system must go through a 111 configuration right before
tering into an absorbing state, i.e., (. . . 010111010 . . . )
→( . . . 010101010 . . . ), theabsorbing state with 1’s at th
odd-numbered sites is probabilistically preferable to
other for nonzeroh.

For the interface dynamics, we start with a single ki
~domain wall! between the two different absorbing region
i.e., ( . . . 10100101 . . . ), where the sharp interface~active
domain! with zero width is placed in the middle of00. Then
the system is updated in parallel following the automata ru
In contrast to the defect dynamics, the system never enter
absorbing state. We measure the positions of theP-interface
front and the U-interface front, averaged over 23103

samples up to typically 105 time steps for various values ofp
andh.

Figure 1 shows typical evolutions of the interface for~a!
D.0, ~b! D50, and ~c! D,0 where D[p2pc and the
critical probability pc50.3908(5) forh50.5 @13#. Evolu-
tions of the average positions of theP- andU-interface fronts
are shown in~d!. TheU-interface front always moves ballis
tically and its velocityvU changes smoothly withD. How-
ever, theP-interface front shows an abrupt change in
dynamics at criticality. It moves ballistically in the activ
phase and its velocityvP vanishes algebraically at criticality
The P-interface front still moves toward the preferred a
sorbing region at criticality and its average distance from
initial position diverges ast1/z with the DP dynamic expo-
nent z. In the absorbing phase, theP-interface front turns
around and moves ballistically in the opposite direction.
the long time limit, theP-interface front moves with the
same velocity and the same direction as theU-interface front
for D,0.

FIG. 1. Typical evolutions of the asymmetric interface dynam
for ~a! D50.05, ~b! D50, and ~c! D520.05 with h50.5. The
preferred~unpreferred! absorbing region is shown in black~gray!
and the active sites are represented by white pixels. Evolution
the interface fronts averaged over many samples are shown in~d!:
dotted lines for the active phase, solid lines at criticality, and das
lines for the absorbing phase.
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In Fig. 2, we plotvP andvU versusD for h50 and 0.5.
The critical probabilitypc50.125(2) for the symmetric cas
(h50) @13#. Indeed, we find that there is a discontinuo
jump of vP at criticality for the asymmetric case (h50.5)
and both velocities coincide in the absorbing phase. In
active phase,vP vanishes continuously approaching the cr
cal point as in the symmetric case. Log-log plots ofvP ver-
susD near criticality in the active phase are shown in Fig.
From the slopes, we estimaten i2n' as 1.35~10! for h50
and 0.65~3! for h50.5 @14#, which agree well with the DI
~1.39! and DP~0.637! value, respectively@15#. We also run
dynamic Monte Carlo simulations for the IMD model an
find similar results, i.e., 1.25~15! for the symmetric case an
0.62~3! for the asymmetric case.

In the absorbing phase, the average distance betwee
P-interface front and theU-interface front~interface width!
is found to saturate to a finite value,Rs5R(`,D). However,
Rs does not scale as in Eq.~3! because this length scale is n
proportional to the correlation length of the system. As o
can see in Fig. 1~c!, this length does not measure the typic

FIG. 2. Interface front velocities versusD. Filled circles and
open boxes represent the interface front velocities for the symm
case. Filled up-triangles represent theP-interface front velocityvP

and open down-triangles theU-interface front velocityvU for the
asymmetric case (h50.5). Lines between data points are guides
the eye.

FIG. 3. Log-log plots ofvP versusD. Filled circles are for the
symmetric case and filled triangles for the asymmetric caseh
50.5). The solid lines are of slopes 1.35 and 0.65, respectivel
e

.
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size of the DP active domain but the distance from the
preferred absorbing region to the farthest active site in
preferred absorbing region. As theU-interface front always
moves ballistically into the unpreferred absorbing regio
this distance should be proportional to the time scale in
system which measures theaveragelifetime of the treelike
active DP clusters grown out of theU-interface front. How-
ever, small clusters do not contribute effectively to the av
age lifetime due to theshading effectby big clusters. This
effect complicates the scaling behavior ofRs .

A simple-minded scaling theory forR(t,D) in the asym-
metric interface dynamics may be given as

R~ t,D!5tg~Dt1/n i!, ~4!

wheren i is the relaxation time exponent for the DP unive
sality class. AtD50, g(0) is a constant, soR(t,0) diverges
linearly in time, which is correct for the asymmetric cas
For D,0, R(t,D) should saturate in the long time limit, s
g(x) must scale as (2x)2n i in thex→2` limit. Therefore,
we expect thatRs scales as (2D)2n i with the DP exponent
n i.1.733. The log-log plot ofRs versusuDu shows a fairly
good straight line, which seems to support a simple pow
law scaling ofRs ~see Fig. 4!. However, our estimate for the
scaling exponent from its slope is well over the above
value, i.e., 2.00~5! for the PCA model and 1.95~10! for the
IMD model. We find that this discrepency is due to the sha
ing effect. A careful analysis incorporating the shading eff
suggests that there should be a logarithmic correction in
scaling theory, i.e.,Rs;uDu2n ilnuDu @16#. The log-log plot of
Rs /u lnuDuu versus uDu ~Fig. 4! also shows a fairly good
straight line. From the slope, we estimate the scaling ex
nent n i51.75(5) for the PCA model and 1.65~10! for the
IMD model, which are in good agreement with the DP valu

Finally, we study the crossover behavior from the DI cla
to the DP class. The operator associated with the symme
breaking fieldh must be relevant at the DI critical point, s
the scaling dimension of this crossover operatoryh must be
positive and may be an independent DI critical exponent.
obtain yh numerically by measuring the interface front v
locities at small values ofh along thep5pc

0 line, wherepc
0

50.125 is the DI critical probability ath50. At finite values

ric
FIG. 4. Log-log plots ofRs and Rs /u lnuDuu versusuDu. Open

circles are forRs and filled circles forRs /u lnuDuu. The solid lines are
of slopes22.00 and21.75, respectively.
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of h along thepc5pc
0 line, the system becomes absorbi

and the two interface front velocities,vU and vP , coincide
and become finite.

Consider the crossover scaling relation near the DI crit
point for the average position of the unfavorred interfa
front XU measured from its initial position asXU(t,h)
5bXU(b2zDIt,byhh), wherezDI is the DI dynamic exponen
~1.75! andb is an arbitrary scaling factor. Withb5t1/zDI, we
have XU5t1/zDIF(htyh /zDI). For the symmetric case (h
50), XU scales ast1/zDI with F(0) being a constant. Forh
.0, XU increases linearly in time~finite vU), so F(x)
;x(zDI21)/yh in the x→` limit. Therefore,vU;hk, where
k5(zDI21)/yh .

Log-log plots ofvU versush at p5pc
0 are shown in Fig. 5.

From the slope, we estimatek50.62(2) and hence we ob
tain yh51.21(5). Interestingly, this value is very close to th
value of the scaling dimension of the operator associa
with a roughening degree of freedom at the DI critical po
@17#. The conventional definition of the crossover expon
f is given as the ratio of the two scaling dimensions, i
f[yh /yD , where yD is the DI scaling dimension of the
temperaturelike operatorD and yD51/n' . Using this rela-
tion, we findf52.24(10), which is consistent with the re
cent result for generalized monomer-monomer models s
ied by Bassler and Browne@4#.

In summary, we study numerically the dynamics of t
driven interfaces in the PCA and IMD model that have tw
asymmetric absorbing states. We find that the spreading
locity of the driven interface shows a discontinuous jump
criticality due to the finite interface width in the absorbin
l
e

d
t
t

.,

d-

e-
t

phase. The interface width diverges in a nontrivial mann
approaching the criticality. We find that our numerical da
are consistent with a recent scaling theory taking into
count the shading effect of big active clusters over sm
ones@16#.
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FIG. 5. Log-log plots ofvU versush at p5pc
050.125. The solid

line is of slope 0.62.
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