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Dynamic behavior of driven interfaces in models with two absorbing states
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We study the dynamics of an interfat@ctive domain between different absorbing regions in models with
two absorbing states in one dimension: probabilistic cellular automata models and interacting monomer-dimer
models. These models exhibit a continuous transition from an active phase into an absorbing phase, which
belongs to the directed Isin@!) universality class. In the active phase, the interface spreads ballistically into
the absorbing regions and the interface width diverges linearly in time. Approaching the critical point, the
spreading velocity of the interface vanishes algebraically with a DI critical exponent. Introducing a symmetry-
breaking fieldh that prefers one absorbing state over the other drives the interface to move asymmetrically
toward the unpreferred absorbing region. In Monte Carlo simulations, we find that the spreading velocity of
this driven interface shows a discontinuous jump at criticality. We explain that this unusual behavior is due to
a finite relaxation time in the absorbing phase. The crossover behavior from the symmett(iDIcalsss to
the asymmetric casédirected percolation clapss also studied. We find the scaling dimension of the
symmetry-breaking fielg,=1.21(5). [S1063-651X99)05805-5

PACS numbg(s): 64.60.Ht, 02.50-r, 05.70.Fh

Universality classes of one-dimensional models exhibit-domain diffuses like a random walker but its size converges
ing a continuous phase transition from an active phase intto a finite value of order of the correlation length. §x)
an absorbing phase with multiple absorbing states are detemust scale as-{x) "t in the x— —cc limit. Therefore, the
mined by the symmetry between the absorbing stdtes]. size of the active domain in the long time limit scales as
If the absorbing phase consists of two equivalent absorbing
states, the phase transition belongs to the directed 8y R(o0o,A)~(—A)7 "L, 3)
universality clasg§2-9]. When the symmetry between the
two absorbing states is broken, one absorbing state becomggd the spreading velocity=0 for A<O.

completely obsolete and the system crosses over to the di- For models with two absorbing states, one can consider
rected percolatioiDP) universality clas§1-5]. This cross-  the dynamics of an active domain in two different environ-
over has been observed in many models with two absorbinghents, i.e., in the sea of one absorbing rediefect dynam-
states, including the probabilistic cellular autom@®CA)  ics) and between two different absorbing regiditsterface
model[6] and the interacting monomer-dimgMD) model  dynamic$ [2,4,7,9. The defect dynamics describe the
[7] in one dimension. spreading of a defedfctive domaihin a nearly absorbing
Dynamic properties of an active domain in the sea of thespace, while the interface dynamics describe the spreading of
absorbing region are well known for models with a singlean interfacgactive domaiibetween two different absorbing

absorbing state, which belong to the DP universality classegions. Note that the interface cannot disappear by itself in
[10]. The size of the active domaiR in one dimension is contrast to the defect.

defined as the distance between the two farthest active sites For the Symmetric case, the System be|ongs to the DI
averaged over surviving samples and satisfies the dynamigiversality class and the active doméitefect or interface
scaling relation behaves similarly in both dynamics. In the active phase, the
1k v spreading velocity scales as in E@) with the DI critical
R(t,A) =t (AL, @) exponents. At criticality, the size of the active domain grows
as R(t,0)~tY# with the DI dynamic exponert. In the ab-
sorbing phase, the active domain splits into two branches,
which diffuse like two random walkers before they meet and
annihilate each other. The absorbing domain of the type dif-
ferent from the absorbing sea emerges between the two ac-
tive branches. The width of each branch should scale as in
Eq. (3) with the DI exponent but the size of the active do-
main defined as the distance between the two farthest active
sites must be of order of the distance between two random
v(A)~A"I""L, 2) walkers. So it diverges with the random w&RW) dynamic
exponentR~tYRw with zgy=2.
At criticality (A=0), the active domain spreads algebra- With a symmetry-breaking field that prefers one absorb-
ically in time, R(t,0)~t2, with the scaling functiorf(0) ing state over the other, the system crosses over to the DP
being a constant. In the absorbing phade<(), the active universality class. The active domaidefec} in the sea of

wheret is the time, A the reduced external parameter,
=) /v, the dynamic exponeritll], andv; (v,) the relax-
ation time(correlation lengthexponent.

In the active phaseA>0), the active domain spreads
ballistically with a finite velocity and its size diverges lin-
early in time. Sof (x) must scale ag”l” "+ in the X— +©
limit. Therefore the asymptotic value of the spreading veloc
ity, v=Ilim,_,,R/t, scales as
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the preferred absorbing region behaves in exactly the same
way as in the defect dynamics of models with a single ab-

sorbing state, because the probability of creating the unpre-
ferred absorbing domain is exponentially small. The spread-

ing velocity in the active phase scales as in Bj.with the

DP exponents, and the defect size in the absorbing phase
scales as in Eq3) with the DP exponent.

However, the dynamics of the active domdinterface
between the preferred and the unpreferred absorbing region
are completely different. The interface is now driven into the
unpreferred absorbing region by the symmetry-breaking
field. In the active phase, the interface spreads ballistically in
both directions. Of course, the interface front near the pre-
ferred absorbing regionR-interface front moves slower
than the interface front near the unpreferred absorbing region
(U-interface front. The unpreferred absorbing state is not
responsible for the absorbing phase transition and its region
a!WayS tends to Sh”,nk aga'n,St the pre_fe”ed absorblr)g '® FiG. 1. Typical evolutions of the asymmetric interface dynamics
gion. So the dynamic behavior of tHg-interface front is ¢, (3 A=0.05, () A=0, and(c) A=—0.05 with h=0.5. The
always ballistic even in the absorbing phase and at criticalitypreferred(unpreferrel absorbing region is shown in bladigray)

The U-interface front velocityy , varies smoothly with the  and the active sites are represented by white pixels. Evolutions of
external parameteX and there is no singularity at the critical the interface fronts averaged over many samples are shovd):in
point. TheP-interface front behaves like a boundary of the dotted lines for the active phase, solid lines at criticality, and dashed
active domain in the sea of the preferred absorbing regiofines for the absorbing phase.

(defect dynamics The P-interface front velocitypp, scales

as in Eq.(2) with the DP exponents in the active phase. Atuniversality class. We introduce a symmetry-breaking field
criticality, the P-interface front behaves in a critical fashion that prefers (10Q. ..) over (01 . ..)[2]. With probabil-

of the DP type. The average spreading distance of théy h, we reject the flipping attempt of the central spin in the
P-interface front from its initial position scales algebraically 111 configuration when it is at an odd-numbered site. As the
ast'# with the DP dynamic exponer [2]. However, the  system must go through a 111 configuration right before en-
size of the active domailiinterface width is the average tering into an absorbing state, i.e.,. (.010110D...)
distance between thB-interface front and thé-interface —(...01QL010D...), theabsorbing state with 1's at the
front, so it still diverges ballistically even at criticality, odd-numbered sites is probabilistically preferable to the
R(t,0)=vt. other for nonzerd.

As we cross the critical point into the absorbing phase, an For the interface dynamics, we start with a single kink
interesting thing happens. In the absorbing phase, the intetdomain wal) between the two different absorbing regions,
face still grows ballistically into the unpreferred absorbingi.e., (...1010010l...), where the sharp interfad@ctive
region with a finite value ob, but the preferred absorbing domain with zero width is placed in the middle 60. Then
state dominates the system and tries to confine the interfadbe system is updated in parallel following the automata rule.
within a finite region like the active domain in the DP sys- In contrast to the defect dynamics, the system never enters an
tems. We expect that the-interface front moves asymptoti- absorbing state. We measure the positions ofPtieterface
cally with the same velocity and the same direction as thdront and the U-interface front, averaged over 210
U-interface front in the entire absorbing phase. Thgmust  samples up to typically Pdtime steps for various values pf
have a finite jump at the absorbing phase transition and thandh.
interface width must be finite in the long time limit. Figure 1 shows typical evolutions of the interface far

In this paper, we study numerically the dynamics of theseA>0, (b) A=0, and(c) A<O whereA=p—p, and the
driven interfaces in the PCA model and the IMD model with critical probability p.=0.3908(5) forh=0.5 [13]. Evolu-

a symmetry-breaking field. We perform dynamic Montetions of the average positions of tRe andU-interface fronts
Carlo simulations to measure the interface width and theare shown ind). The U-interface front always moves ballis-
spreading velocities of the two interface fronts. Indeed, wetically and its velocityv, changes smoothly withh. How-
find a discontinuous jump afp at criticality and an interest- ever, theP-interface front shows an abrupt change in its
ing scaling behavior of the interface width near the transi-dynamics at criticality. It moves ballistically in the active
tion. phase and its velocity, vanishes algebraically at criticality.

The PCA model studied here was originally introduced byThe P-interface front still moves toward the preferred ab-
Grassberger, Krause, and von der Twél. The model sorbing region at criticality and its average distance from the
evolves with elementary rule number 94 in the notation ofinitial position diverges as? with the DP dynamic expo-
Wolfram [12] except for 110 and 011 configurations, wherenent z. In the absorbing phase, theinterface front turns
the central spin 1 flips to O with probabilify and remains around and moves ballistically in the opposite direction. In
unflipped with probability - p. This model has two equiva- the long time limit, theP-interface front moves with the
lent absorbing states, i.e., (I®1..) and Q101...), and same velocity and the same direction aslthimterface front
exhibits an absorbing phase transition that belongs to the Ofbr A<0.
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FIG. 2. Interface front velocities versus. Filled circles and In |A|
open boxes represent the interface front velocities for the symmetric
case. Filled up-triangles represent fdénterface front velocity p FIG. 4. Log-log plots ofRs and Rg/|In|A|| versus|A|. Open

and open down-triangles tHa-interface front velocityv,, for the  circles are folRg and filled circles foiRq/|In|A||. The solid lines are
asymmetric caseh=0.5). Lines between data points are guides toof slopes—2.00 and— 1.75, respectively.
the eye.
size of the DP active domain but the distance from the un-
In Fig. 2, we plotvp andv, versusA for h=0 and 0.5. preferred absorbing region to the farthest active site in the
The critical probabilityp.=0.125(2) for the symmetric case preferred absorbing region. As theinterface front always
(h=0) [13]. Indeed, we find that there is a discontinuousmoves ballistically into the unpreferred absorbing region,
jump of vp at criticality for the asymmetric casén€0.5)  this distance should be proportional to the time scale in the
and both velocities coincide in the absorbing phase. In theystem which measures tlaweragelifetime of the treelike
active phasey p vanishes continuously approaching the criti- active DP clusters grown out of thé-interface front. How-
cal point as in the symmetric case. Log-log plotwgfver-  ever, small clusters do not contribute effectively to the aver-
susA near criticality in the active phase are shown in Fig. 3.age lifetime due to thehading effecby big clusters. This
From the slopes, we estimaig—», as 1.3510) for h=0  effect complicates the scaling behaviorRf. -
and 0.6%3) for h=0.5[14], which agree well with the DI A simple-minded scaling theory fdR(t,A) in the asym-
(1.39 and DP(0.637 value, respectively15]. We also run  metric interface dynamics may be given as
dynamic Monte Carlo simulations for the IMD model and _ 1
find similar results, i.e., 1.24%5) for the symmetric case and R(t,A)=tg(At™"l), (4)
0.623) for the a;ymmetrlc case. . where ) is the relaxation time exponent for the DP univer-
In the absorbing phase, the average distance between the,. - . .
. : . . sality class. AA=0, g(0) is a constant, sR(t,0) diverges
P-interface front and th&J-interface front(interface width . o A -
) - linearly in time, which is correct for the asymmetric case.
is found to saturate to a finite valu@,= R(%,A). However, : ; L
; . : For A<O0, R(t,A) should saturate in the long time limit, so
R, does not scale as in E) because this length scale is not s I
; : (X) must scale as<x) "l in the x— —oo limit. Therefore,
proportional to the correlation length of the system. As one’

A : .~ _we expect thaRg scales as{ A) ™"l with the DP exponent
can see in Fig. (t), this length does not measure the typical »=1.733. The log-log plot oR, versus|A| shows a fairly

good straight line, which seems to support a simple power-
law scaling ofR; (see Fig. 4. However, our estimate for the
scaling exponent from its slope is well over the above DP
1k - value, i.e., 2.0() for the PCA model and 1.9%0) for the
IMD model. We find that this discrepency is due to the shad-
ing effect. A careful analysis incorporating the shading effect

0 T d T d T T T T T

— 2r 7 suggests that there should be a logarithmic correction in the
= scaling theory, i.e Rs~|A|~"IIn|A| [16]. The log-log plot of
£ 4L | R./|In|A|| versus|A| (Fig. 4 also shows a fairly good

straight line. From the slope, we estimate the scaling expo-
nent v=1.75(5) for the PCA model and 1.6%) for the
-4 - IMD model, which are in good agreement with the DP value.
Finally, we study the crossover behavior from the DI class
to the DP class. The operator associated with the symmetry-
5 4 13 2 4 breaking fieldh must be relevant at the DI critical point, so
the scaling dimension of this crossover operatpmust be
In A positive and may be an independent DI critical exponent. We
FIG. 3. Log-log plots ofv versusA. Filled circles are for the ~Obtainy, numerically by measuring the interface front ve-
symmetric case and filled triangles for the asymmetric cdse ( locities at small values df along thep=p{ line, wherep?
=0.5). The solid lines are of slopes 1.35 and 0.65, respectively. =0.125 is the DI critical probability &= 0. At finite values
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of h along thepcng line, the system becomes absorbing
and the two interface front velocities;; andvp, coincide
and become finite.

Consider the crossover scaling relation near the DI critical
point for the average position of the unfavorred interface
front X, measured from its initial position aX(t,h)
=bXy (b~ ?it,bYrh), wherezp, is the DI dynamic exponent
(1.75 andb is an arbitrary scaling factor. With=t?01, we
have X,=tYoid(ht'h/?01), For the symmetric caseh(
=0), X, scales as*?0 with ®(0) being a constant. Fdr
>0, Xy increases linearly in timéfinite vy), so ®(x)
~x@1 =DM in the x—o limit. Therefore,v,~h*, where
k=(Zp1—1)Iyh.

Log-log plots ofv, versushatp= pg are shown in Fig. 5.
From the slope, we estimate=0.62(2) and hence we ob-
tainy,=1.21(5). Interestingly, this value is very close to the
value of the scaling dimension of the operator associated
with a roughening degree of freedom at the DI critical point
[17]. The conventional definition of the crossover exponentin€ is of slope 0.62.
¢ is given as the ratio of the two scaling dimensions, i.e.,
¢=ynlys, wherey, is the DI scaling dimension of the phase. The interface width diverges in a nontrivial manner,
temperaturelike operatak andy,=1/v, . Using this rela- approaching the criticality. We find that our numerical data
tion, we find ¢»=2.24(10), which is consistent with the re- are consistent with a recent scaling theory taking into ac-

cent result for generalized monomer-monomer models stuczount the shading effect of big active clusters over small
ied by Bassler and Brownit]. ones[16].

In summary, we study numerically the dynamics of the i .
driven interfaces in the PCA and IMD model that have two We wish to thank C.-C. Chen and M. den Nijs for useful

asymmetric absorbing states. We find that the spreading véliscussions. This work was supported in part by the Ministry
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locity of the driven interface shows a discontinuous jump atof Education, KoreaGrant No. 97-2400 and by an Inha

criticality due to the finite interface width in the absorbing
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