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Critical phenomena of nonequilibrium dynamical systems with two absorbing states
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We study nonequilibrium dynamical models with two absorbing states: interacting monomer-dimer models,
probabilistic cellular automata models, nonequilibrium kinetic Ising models. These models exhibit a continu-
ous phase transition from an active phase into an absorbing phase that belongs to the universality class of the
models with the parity conservation. However, when we break the symmetry between the absorbing states by
introducing a symmetry-breaking field, Monte Carlo simulations show that the system goes back to the
conventional directed percolation universality class. In terms of domain wall language, the parity conservation
is not affected by the presence of the symmetry-breaking field. So the symmetry between the absorbing states
rather than the conservation laws plays an essential role in determining the universality class. We also perform
Monte Carlo simulations for the various interface dynamics between different absorbing states, which yield
new universal dynamic exponents. With the symmetry-breaking field, the interface moves, in average, with a
constant velocity in the direction of the unpreferred absorbing state and the dynamic scaling exponents appar-
ently assume trivial values. However, we find that the hyperscaling relation for the directed percolation
universality class is restored if one focuses on the dynamics of the interface on the side of the preferred
absorbing state only.@S1063-651X~98!06806-8#

PACS number~s!: 64.60.2i, 02.50.2r, 05.70.Ln, 82.65.Jv
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I. INTRODUCTION

Many nonequilibrium dynamical models show continuo
phase transitions similar to ordinary equilibrium models.
fact, nonequilibrium models can supply much richer critic
behavior because their evolving dynamics do not require
detailed balance. So the universality classes of nonequ
rium critical phenomena would be much more diverse a
would be governed by various symmetry properties of
evolution dynamics.

An interesting example of nonequilibrium phase tran
tions is the absorbing phase transition. In this case, th
exist some absorbing states in the configurational ph
space. If the system gets into one of the absorbing state
the evolution dynamics, then the system is trapped insid
the absorbing states and no further dynamics occur to es
out of the absorbing states. By controlling an external para
eter, one can observe a continuous phase transition from
active steady-state phase into an inactive absorbing ph
Recently, various kinds of nonequilibrium models exhibiti
such an absorbing phase transition have been studied e
sively @1#. Most of the models investigated are found to b
long to the directed percolation~DP! universality class@2–
12#. A common feature of these models is that the absorb
phase consists of a single absorbing state.

Only a few models have been studied that are not in
DP universality class. Those are the modelsA and B of
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probabilistic cellular automata~PCA! @13,14#, nonequilib-
rium kinetic Ising models with two different dynamics~NKI !
@15–17#, and interacting monomer-dimer models~IMD !
@18,19#. Numerical investigations show that critical beha
iors of these models are different from DP but form
non-DP universality class. These models share a comm
property that the absorbing phase consists of two equiva
absorbing states. By the analogy to the equilibrium Is
model, which has two equivalent ground states, we call
non-DP universality class thedirected Ising~DI! universality
class.

Recently, the branching annihilating random wal
~BAW! with offspring have been studied intensively@20–
28#. Even though the BAW model has a single absorb
state~vacuum!, its critical behavior depends on the parity
the number of offspring. It has been shown numerically t
the BAW models with an odd number of offspring~BAWo!
belong to the DP class, while the BAW models with an ev
number of offspring~BAWe! belong to the DI class@22,26#.
Dynamics of the BAWe models conserve the number
walkers modulo 2, while the BAWo models evolve witho
any conservation. The common feature of the PCA, N
IMD, and BAWe models is that the number of particle
~walkers in BAWe and kinks or domain walls in the oth
models! is conserved modulo 2. From this point of view,
was suggested that the parity conservation is responsible
the DI universality class. This is why the DI universali
class is sometimes called as the PC~parity-conserving! uni-
versality class.

However, we recently showed for the IMD model that
external field that conserves the parity but breaks the s
metry between two absorbing states forces the system b
to the conventional DP universality class@29#. So we argued
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57 6439CRITICAL PHENOMENA OF NONEQUILIBRIUM . . .
that the symmetry between absorbing states rather than
conservation laws plays an essential role in determining
universality class. Our argument was supported by rec
results for generalized monomer-monomer models stud
by Bassler and Browne@30–32#, and for some stochasti
models by Hinrichsen@33#.

In this paper, we study the effect of a symmetry-break
field in the IMD, PCA, and NKI models via stationary a
well as dynamic Monte Carlo simulations. Stationary sim
lations and defect dynamics for all three models clearly sh
that the DI universality class crosses over to the DP c
under a weak parity-conserving symmetry-breaking field.
fact, the ratio of the number of stationary runs that fall in
the unpreferred absorbing state and the number of those
the preferred state vanishes exponentially in system size
the system with the symmetry-breaking field has in effec
single absorbing state, which leads to the DP class.

We also introduce new types of interface dynamics t
result in different values of dynamic scaling exponen
These exponents are found to be universal. Withou
symmetry-breaking field, the hyperscaling relation for the
universality class is intact for various interface dynami
However, with the symmetry-breaking field, the interfa
moves, in average, with a constant velocity in the direct
of the unpreferred absorbing state. The dynamic scaling
ponents apparently assume trivial values and violate the
perscaling relation. However, we find that the hyperscal
relation for the DP universality class is restored if one
cuses on the dynamics of the interface on the side of
preferred absorbing state only.

In the next section, we report our numerical results for
IMD model in various dynamic simulations. In Sec. III, th
effect of the symmetry-breaking field in the IMD model
dicussed in detail via stationary and dynamic simulations
Sec. IV, the numerical results for the PCA and NKI mod
are presented. Finally we conclude in Sec. V with a summ
and discussion.

II. DYNAMIC CRITICAL BEHAVIOR OF THE IMD
MODEL

The interacting monomer-dimer~IMD ! model is a gener-
alization of the simple monomer-dimer model on a cataly
surface, in which particles of the same species have nea
neighbor repulsive interactions@18#. Here we consider the
one-dimensional IMD model with infinitely strong repu
sions between the same species. A monomer (A) cannot ad-
sorb at a nearest-neighbor site of an already occupied m
mer~restricted vacancy! but adsorbs at a free vacant site wi
no adjacent monomer-occupied sites. Similarly, a dimer (B2)
cannot adsorb at a pair of restricted vacancies (B in nearest-
neighbor sites! but adsorbs at a pair of free vacancies. Th
are no nearest-neighbor restrictions in adsorbing particle
different species. Only the adsorption-limited reactions
considered. Adsorbed dimers dissociate and a nearest n
bor of the adsorbedA andB particles reacts, forms theAB
product, and desorbs the catalytic surface immediat
Whenever there is anA adsorption attempt at a vacant si
between an adsorbedA and an adsorbedB, we allow theA to
adsorb and react immediately with the neighboringB, thus
forming the AB product and desorbing the surface. If th
he
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process is not allowed, the IMD model possesses infinit
many absorbing states which will be discussed elsewh
@34#.

The system has no fully saturated phases of monomer
dimers, but instead two equivalent half-filled absorbi
states. These states are comprised of only the monome
the odd- or even-numbered lattice sites, i.e., (A0A0•••) and
(0A0A•••) where ‘‘A’’ represents a monomer-occupied si
and ‘‘0’’ a vacant site. These two states are probabilistica
equivalent, unless we introduce a symmetry-breaking fi
discriminating the dynamics at the odd- and even-numbe
sites. In this section, we consider the IMD model withou
symmetry-breaking field. This model can be parametrized
the monomer adsorption-attempt probabilityp. The dimer
adsorption-attempt probability is then given by 12p.

In our previous stationary and dynamic Monte Ca
simulations@18,19#, it was found that the system undergoes
continuous phase transition from a reactive phase into
absorbing phase, which belongs to the DI universality cla
The kink representation of the IMD model is complicat
due to its multicomponent nature. Three types of kinks c
be defined between lattice sites occupied by a dimer an
dimer, by a dimer and a vacancy, and by a vacancy an
vacancy. No conservation law is associated with each typ
kink, but the total number of kinks is conserved modulo
So, in a broad sense, one can say that the IMD mo
evolves by the parity-conserving dynamics like the BAW
model. In this section, we discuss the dynamic critical b
havior of the IMD model via Monte Carlo simulations. Som
of the results reported previously@19# are much improved
using efficient algorithms and some results for various int
face dynamics are presented.

A. Defect dynamics

We start with a lattice occupied by monomers at altern
ing sites except at the central vacant site, i.
(•••A0A000A0A0•••), where0 represents a defect at th
central site. Then the system evolves along the dynamic
of the model. After one adsorption attempt on the avera
per lattice site~one Monter Carlo time step!, the time is
incremented by one unit. A number of independent ru
typically 53105, are made up to 33104 time steps for vari-
ous values ofp near the critical probabilitypc . Most runs,
however, stop earlier because the system enters into on
the absorbing states. We measure the survival probab
P(t) ~the probability that the system is still active at timet),
the number of dimersN(t) averaged over all runs, and th
mean square distance of spreading of the active regionR2(t)
averaged over surviving runs. At criticality, the values
these quantities scale algebraically in the long time limit@2#,

P~ t !;t2d,

N~ t !;th, ~1!

R2~ t !;tz

and double-logarithmic plots of these values against ti
show straight lines at critiality. Off criticality, these plot
show curvatures. More precise estimates for the dyna
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6440 57HWANG, KWON, PARK, AND PARK
scaling exponents can be obtained by examining the lo
slopes of the curves. The effective exponentd(t) is defined
as

2d~ t !5
log@P~ t !/P~ t/b!#

log~b!
~2!

and similarly forh(t) and z(t). In this paper, we plot the
effective exponents against 10/t with b510. Off criticality,
these plots show positive or negative curvatures. The sca
exponents can be extracted by taking the asymptotic va
of the effective exponents at criticality.

Our estimates for the critical probability and the dynam
scaling exponets are pc50.5322(3), d50.290(5),
h50.00(1), andz51.135(5) ~see Fig. 1!. Note that the es-
timate forz is much improved compared with our previou
result:z51.34(20)@19#. These values are in excellent agre
ment with those of the DI universality class such as
BAWe model@26#.

FIG. 1. Plots of the effective exponents against 10/t for the
defect dynamics of the symmetric IMD model. Three curves fr
top to bottom in each panel correspond top50.5315, 0.5322, and
0.5329.
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B. Interface dynamics

For the interface dynamics, we start with a pair of vaca
cies placed at the central sites of a lattice and with monom
occupied at alternating sites, i.e., (•••A0A00A0A•••)
where the interface between two different absorbing state
placed in the middle of two central vacancies00. In this case,
the system never enters an absorbing state, so that the
vival probability is always equal to 1 and the exponentd
50. Even though the values ofd andh vary with the types
of dynamics, their sumd1h, which is responsible for the
growth of the number of kinks~or dimers! in surviving runs,
is known to be universal@35,19#. This guarantees that th
generalized hyperscaling relation is always satisfied;b/n i
1d1h5dz/2 whered is the spatial dimension andb andn i
are steady-state exponents explained in the next section
d50 in this type of interface dynamics, it does not supp
any new information about dynamic critical behavior of t
system.

In this section, we introduce three different types of inte
face dynamics that may give nontrivial scaling of the surv
ial probability P(t). For convenience, the ordinary interfac
dynamics as above is called astype-A interface dynamics.
Our previous study for the type-A interface dynamics found
that h50.285(20) andz51.14(2) as expected@19#.

In the type-B interface dynamics, we stop the evolution if
the interface collapses to its initial configuration, i.e., tw
vacant sites between the absorbing states. Then this ru
treated as a dead one. This dynamics is originally introdu
by Bassler and Browne for a three species monom
monomer model@30#. At criticality, we measureP(t), N(t),
andR2(t). P(t) now represents not a true survival probab
ity but a probability of avoiding a collapse. In Fig. 2, we pl
the effective exponents against 10/t. Our estimates for the
dynamic scaling exponents ared50.73(1), h520.41(1),
andz51.16(2). These values satisfy the generalized hyp
scaling relation of the DI universality class and are in exc
lent accord with those reported by Bassler and Browne@30#.
To see how much these exponents are robust, we chang
criteria for stopping the evolution from two active sites
four and six active sites. We find that there is no essen
change in the values of the exponents. Therefore the n
trivial value of d in the type-B dynamics is believed to be
universal.

In the type-C interface dynamics, we focus only on the
profile between the central site and the leftmost site~the left
front! of the active region. We stop the evolution when t
left front of the active region comes back to the center~initial
position! and treat this run as a dead one~see Fig. 3!. So
P(t) represents a probability of avoiding a collapse of t
active region in the left side with respect to the initial loc
tion of the interface. We measureN(t) as the number of
dimers only in the left side of the center andR2(t) as the
mean square spreading of the active region in the left sid
the center. The type-C interface dynamics is useful when on
needs to distinguish the behavior of the left and right fro
of the interface. So it is especially important to consider t
type of dynamics for the interface between unequivalent
sorbing states~see Sec. III!. The effective exponents again
10/t at criticality are plotted in Fig. 4. Our estimates ared
50.395(5), h520.10(1), andz51.150(5), which also sat-
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57 6441CRITICAL PHENOMENA OF NONEQUILIBRIUM . . .
isfy the generalized hyperscaling relation of the DI univ
sality class. The value ofd is different from those for the
defect and other interface dynamics. It would be usefu
check that this exponent is also universal for other model
the DI universality class. In Sec. IV, we study the typeC
dynamics for the PCA model and find this exponent is u
versal.

Finally, we introduce thetype-D interface dynamics.This
dynamics is similar to the type-C dynamics in measuring
physical quantities. But we do not stop the evolution wh
the left front of the active region hits the center. Howev
while its left front wanders in the right side of the center, w
treat this run as a dead one temporarily, and setN(t) and
R2(t) to zero. When it comes back to the left side of t
center, we treat this run as a surviving run again and mea
N(t) andR2(t) as usual in the type-C dynamics.P(t) rep-
resents a probability that the active region covers the left s
of the center and is expected to converge to a nonzero
stant less than 1. The effective exponents against 10/t at
criticality are plotted in Fig. 5. Our estimates ared
50.010(5), h50.29(1), andz51.15(1). As expected,d is
nearly zero andP(t) converges to 0.69~1! ~see Fig. 6!. So

FIG. 2. Plots of the effective exponents against 10/t for the type-
B interface dynamics of the symmetric IMD model at criticali
(pc50.5322).
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the type-D interface dynamics yields the same exponents
in the type-A ~ordinary! dynamics. The type-A dynamics
does not yield the correct scaling exponents for the interf
between unequivalent absorbing states, so in this case
type-D dynamics can be employed instead~see Sec. III C!.

III. THE IMD MODEL WITH A SYMMETRY-BREAKING
FIELD

We introduce a symmetry-breaking field that makes
system prefer one absorbing state over the other@29#. This
can be done by differentiating the monomer adsorpti
attempt probabilityp at an odd-numbered vacant site and
an even-numbered one. If a monomer attempts to adsor
an even-numbered free vacant site, the adsorption attem
rejected with probabilityh (0<h<1). The caseh50 corre-
sponds to the ordinary IMD model discussed in the previo
section. For finiteh, the monomers tend to adsorb more
an odd-numbered site than an even-numbered one. So
absorbing state with odd-numbered sites occupied by mo
mers is probabilistically preferable to the other absorb
state. However, the kink dynamics of this model still co
serves the parity in terms of the total number of kinks. In t
section, we show that the symmetry-breaking field forces
system back to the conventional DP universality class
stationary and dynamic simulations. Therefore one can c
clude that not the parity conservation but the symmetry
tween the absorbing states is essential in determining
universality class of the absorbing phase transitions.

A. Stationary simulations

We run stationary Monte Carlo simulations starting w
an empty lattice with sizeL. Then the system evolves alon
the dynamic rule with the symmetry-breaking field using p
riodic boundary conditions. We set the value of t
symmetry-breaking fieldh50.5 for convenience. After a
sufficiently long time, the system reaches a quasisteady s
first and stays for a reasonably long time before finally e
tering into an absorbing state. We measure the concentra
of dimers in the quasisteady state and average over m
independent runs that have not yet entered into an absor

FIG. 3. The type-C interface dynamics in the IMD model. Gray
black, and white dots represent monomers, dimers, and vacan
respectively.
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6442 57HWANG, KWON, PARK, AND PARK
state. The number of independent runs varies from 53104

for the system sizeL532 to 33103 for L5512.
Elementary scaling theory combined with the finite-s

scaling theory@2,36# predicts that the average concentrati
of dimersr̄ at criticality in the steady state scales with sy
tem sizeL as

r̄~L !;L2b/n', ~3!

whereb is the order parameter exponent andn' is the cor-
relation length exponent in the spatial direction. In the re
tive phase (p,pc), the concentrationr̄ remains finite in the
limit L→`, but it should vanish exponentially with syste
size in the absorbing phase (p.pc).

At pc , we expect the ratio of the concentrations of dime
for two successive system sizesr̄(L/2)/ r̄(L)52b/n', ignor-
ing corrections to scaling. This ratio converges to 1 forp
,pc and approaches 2 forp.pc in the limit L→`. We plot
the logarithm of this ratio divided by log102 as a function of
p for L564,128,256, and 512 in Fig. 7. The crossing poi
between lines for two successive sizes converge to the p
at pc.0.413(1) andb/n'.0.23(2). Thecritical probability
can be more accurately estimated from the defect dynam
simulations;pc50.4138(3)~see Sec. III B!. We run station-
ary simulations at this value ofp and find the better estimat
for b/n'50.243(8) ~see Fig. 8!. This value is consisten
with the standard DP value of 0.2524~5! @26#.

By analyzing the decay characteristics of dimer conc
trations at criticality, we can extract information about t

FIG. 4. Plots of the effective exponents against 10/t for the type-
C interface dynamics of the symmetric IMD model at criticality.
-

-
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relaxation time exponentn i . From the elementary scalin
theory, one can expect the short time behavior of the dim
concentration at criticality as

r̄~ t !;t2b/n i. ~4!

The characteristic~relaxation! time t for a finite system is

FIG. 5. Plots of the effective exponents against 10/t for the type-
D interface dynamics of the symmetric IMD model at criticality.

FIG. 6. P(t) vs 10/t for the type-D interface dynamics of the
symmetric IMD model.
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57 6443CRITICAL PHENOMENA OF NONEQUILIBRIUM . . .
defined as the elapsing time for a finite system to enter
the quasisteady state. Then one can findt scales at criticality
as

t;Ln i /n'. ~5!

In Fig. 9, we plotr̄ at pc versus time for various system
sizes. Investigating the slopes in this double-logarithmic p
we estimateb/n i50.165(10). The double-logarithmic plo
~Fig. 10! for the characteristic timet versus the system siz
L shows a straight line from which we obtainn i /n'

51.45(10), which is consistent with the above results a
agrees reasonably well with the standard DP value
1.580~2!.

Similar results are obtained for the system with a wea
symmetry-breaking field. Therefore we conclude that
symmetry-breaking field in the system with two absorbi
states is relevant in determining the universality class
makes the system behave like having a single absor
state. In fact, the number of stationary runs falling into t
unpreferred absorbing state compared with the numbe
those into the preferred state vanishes exponentially in
tem size~see Sec. IV A!. The preferred absorbing state b
haves as a unique absorbing state of the system.

FIG. 7. Plots of log10@ r̄(L/2)/ r̄(L)#/ log10(2) vs p for the
asymmetric IMD model with the symmetry-breaking fieldh50.5
for various system sizesL564, 128, 256, and 512.

FIG. 8. The average concentration of dimersr̄ at criticality in
the quasisteady state against the system sizeL in a double-
logarithmic plots for various system sizesL5322512 for the
asymmetric IMD model withh50.5. The solid line is of slope
20.243.
to

t,

d
f

r
e

d
g

of
s-

B. Defect dynamics

When the symmetry between the absorbing states is
ken, the defect dynamics are sensitive to the initial confi
rations. One can start with a lattice with a defect, either in
preferred absorbing state or in the unpreferred absorb
state. The latter case does not show critical spreading of
active region. The domain of the preferred absorbing s
grows at the center of the active region while the region
the unpreferred absorbing state recedes with a cons
speed. This dynamics is much like two interface dynam
between the preferred and unpreferred absorbing st
where two interfaces move in the opposite direction. We w
discuss the interface dynamics in the next subsection.

We choose the initial configuration with a defect at t
center in the preferred absorbing state. We seth50.5 for
convenience. Our estimates for the critical probability a
the dynamic scaling exponents arepc50.4138(3),
d50.163(5), h50.315(5), andz51.265(5) ~see Fig. 11!.
These values are also improved compared with our prev
results@29# and are in excellent accord with the standard D
values;d50.1596(4), h50.3137(10), andz51.2660(14).

C. Interface dynamics

As the two absorbing states are not probabilistica
equivalent, the dynamics of the interface between the p
ferred and unpreferred absorbing states shows a comple

FIG. 9. Time dependence of the average concentration of dim
at criticality for various system sizesL5322512 for the asymmet-
ric IMD model with h50.5. The solid line is of slope20.165.

FIG. 10. Size dependence of the characteristic time at critica
for various system sizesL5322512 for the asymmetric IMD
model withh50.5. The solid line is of slope 1.45.
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6444 57HWANG, KWON, PARK, AND PARK
different behavior from the symmetric case. In Fig. 12, ev
lutions of the interface below, at, and above criticality a
shown. Forp,pc , the active region grows linearly in tim
in both directions. Of course, the left interface front near

FIG. 11. Plots of the effective exponents against 10/t for the
defect dynamics of the asymmetric IMD model withh50.5. Three
curves from top to bottom in each panel correspond top50.4132,
0.4138, and 0.4144.
-

e

preferred absorbing state~we call it P-interface front! moves
slower than the right interface front~U-interface front! near
the unpreferred absorbing state due to the symme
breaking field. At the critical point, theP-interface front be-
haves like a critical interface~zero velocity with nontrivial
temporal scaling! as in the critical defect dynamics, but th
U-interface front still moves with a finite velocity. As w
increasep further into the absorbing phase, the active reg
cannot grow and the preferred absorbing state domina
The P-interface front moves with the same velocity and t
same direction as theU-interface front. The width of the
active region is finite, in contrast to its diffusive behavior
the absorbing phase for the symmetric case. Here, we
sider the critical case only.

In the symmetric case, four different interface dynam
are introduced. In the ordinary~type-A) interface dynamics,
the exponentz/2 converges to a trivial value of unity, due t
the ballistic nature of theU-interface front even at criticality.
The type-B interface dynamics also involve the dynamics
theU-interface front, so it does not yield nontrival values
the exponents. The type-C and type-D interface dynamics
focus only on the profile between the initial position of th
interface ~the center! and theP-interface front which be-
haves in a critical fashion.

For the type-C dynamics, we run 23104 independent
samples up to 33104 time steps atpc50.4138 withh50.5.
Our estimates ared50.37(1), h50.11(1), andz51.27(1)
~Fig. 13!. As expected, the value ofz agrees well with the
DP value and these exponents satisfiy the generalized hy
scaling relation for the DP universality class, i.e.,d1h
50.48(2) is in excellent accord with the standard DP va
of 0.473~1!.

Similarly, we find d50.02(2), h50.45(1), and
z51.23(2) for the type-D dynamics~Fig. 14!. Again these
values agree well with the DP values. The concept of c
centrating only on the relevant interface front may be appl
to other types of models in which many types of interfac
coexist and some of them are not equivalent.

IV. OTHER MODELS

A. Probabilistic celluar automata

Grassberger, Krause, and von der Twer@13,14# studied
two models of probabilistic cellular automata~PCA!,
FIG. 12. Evolutions of the asymmetric IMD interface dynamics for~a! p,pc , ~b! p5pc , and~c! p.pc . The region of the preferred
~unpreferred! absorbing state is shown in black~grey!. The active sites are represented by white pixels.
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namely, modelsA andB about ten years ago. TheA model
evolves with rule number 94 in the notation of Wolfram@37#
except 110 and 011 configurations, where the central sp
flips to 0 with probabilityp and remains unflipped with prob
ability 12p. TheB model evolves with rule number 50 ex
cept 110 and 011 configurations, where the central spi
flips to 0 with probability 12p and remains unflipped with
probability p. These are the first models investigated, wh
are not in the DP universality class. Both models have t
equivalent absorbing states, i.e., (1010•••) and (0101•••),
and exhibit an absorbing phase transition that belongs to
DI universality class. But these models behave differently
the absorbing phase. Once the system enters into one o
two absorbing states, it remains in that state forever in mo
A but oscillates from one state to the other in modelB. In
spite of the discriminating behavior, these models belong
the same DI universality class. In the kink representation,
total number of kinks are conserved modulo 2 in the dyna
ics.

First, consider theA model. We can introduce th
symmetry-breaking field which makes the system to pre
(1010•••) to (0101•••). The system must go through a 11

FIG. 13. Plots of the effective exponents against 10/t for the
type-C interface dynamics of the asymmetric IMD model forh
50.5 at criticality.
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configuration right before entering into an absorbing sta
i.e., (•••010111010•••)→(•••010101010•••). If the flip-
ping probability of the central spin in the 111 configuratio
depends on the evenness or oddness of the position o
central spin, the symmetry between two absorbing states
be broken. With probabilityh, we reject the flipping attemp
of the central spin in the 111 configuration when it is at
even-numbered site. Then the absorbing state with 1’s at
odd-numbered sites is probabilistically preferable to
other one. Again the parity in the total number of kinks
conserved even with the symmetry-breaking fieldh.

We run the defect and type-C interface dynamics withh
50.1. Our estimates for the defect dynamics arepc
50.2435(4), d50.1625(25), h50.310(5), and z
51.245(5)~Fig. 15!. These values agree very well with th
standard DP values. For the type-C interface dynamics a
criticality, we find d50.372(2), h50.115(5), and z
51.275(5) ~Fig. 16!, which agree with the results for th
IMD model with the symmetry-breaking field~see Sec.
III C !. So the value ofd in the type-C dynamics seems to b
universal. In order to check whether the value ofd in the
type-C dynamics is universal in the symmetric case, we r

FIG. 14. Plots of the effective exponents against 10/t for the
type-D interface dynamics of the asymmetric IMD model forh
50.5 at criticality.
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6446 57HWANG, KWON, PARK, AND PARK
the type-C interface dynamics whenh50 and find
d50.395(5), h520.08(2), and z51.17(2) ~Fig. 17!,
which is consistent with those found in the IMD model wit
out the symmetry-breaking field~see Sec. II B!.

We also run stationary simulations at criticality with si
L532 up to 512 withh50.1. Our estimates for the stead
state exponents areb/n'50.245(5), b/n i50.155(5), and
n i /n'51.63(5) ~Fig. 18!, which also agree reasonably we
with the DP values. We measure the number of station
runs falling into the unpreferred and preferred absorb
states respectively, i.e.,Nu and Np at criticality in the long
time limit. The ratioR5Nu /Np versus system sizeL is plot-
ted in Fig. 19. This ratio vanishes exponentially in syst
size;R;exp(2L/L0) with L0.13. It means that the chanc
of entering into the unpreferred absorbing state is neglig
so the system behaves like having a single absorbing sta
the preferred one.

For the B model, the situation is quite differen
The system oscillates between the two absorb
states; (1010•••)↔(0101•••). In this model, the system
must go through a 000 configuration right before ent
ing into an absorbing state, i.e., (•••101000101•••)

FIG. 15. Plots of the effective exponents against 10/t for the
defect dynamics of the asymmetric PCAA model with h50.1.
Three curves from top to bottom in each panel correspond tp
50.2443, 0.2435, and 0.2427.
ry
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→(•••010101010•••). We can introduce a rejection prob
ability discriminating the even- and odd-numbered si
similar to that in theA model, but it cannot make the tw
absorbing states probabilistically unequivalent due to the
cillatory nature in the dynamics. In fact, it is meaningless
distinguish the two absorbing states without any dynam
barrier. In theA model, there exists a dynamic barrier b
tween the two absorbing states, which makes the system
an infinitely long time to hop from near one absorbing st
to near the other absorbing state. This dynamic barrie
similar to the free energy barrier between two ground sta
in the equilibrium Ising model. Without this barrier, there
no way to distinguish the two absorbing states. Therefor
seems impossible to find the crossover from the DI to the
universality class in the B model.

B. Nonequilibrium kinetic Ising model

Nonequilibrium kinetic Ising model~NKI ! recently intro-
duced by Menyha´rd @15–17# evolves with the competing ef
fect of spin flips at zero temperature (T50) and nearest-
neighbor spin exchanges atT5`. The spin-flip dynamics

FIG. 16. Plots of the effective exponents against 10/t for the
type-C interface dynamics of the asymmetric PCAA model with
h50.1 at criticality.
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occurs with probabilityp and spin-exchange dynamics wi
12p. The competition between the two different dynam
at different temperatures drives the system into an none
librium steady state and there is a continuous phase trans
as the competition parameterp varies.

In theT50 spin-flip dynamics, the system evolves tryin
to lower the energy. A spin is allowed to flip only if the fli
lowers the energy of the system or leaves it unchanged.
use the parameterr to distinguish the cases when the ener
is lowered or unchanged. We flip a spin with probabilityr in
the former case and flip a spin freely in the latter case. H
we setr 50.5. In theT5` spin-exchange dynamics, neare
neighbor spins are freely exchanged regardless of the en
change. Any up-down pair of spins can flip to the down-
pair of spins if they are in the nearest neighbor.

The absorbing phase consists of two completely fer
magnetically ordered states that are equivalent. One ca
flip a spin in these absorbing states because it increase
energy. These absorbing states are the same as the tw
generate ground states of the equilibrium ferromagnetic Is
model. The absorbing transition of the NKI model belongs
the DI universality class. In terms of ordinary domain-w

FIG. 17. Plots of the effective exponents against 10/t for the
type-C interface dynamics of the symmetric PCAA model at criti-
cality.
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FIG. 18. The kink density in the quasisteady state against
system size, time dependence of the kink density atL5512, and
size dependence of the characteristic time are plotted for the as
metric PCAA model withh50.1 at criticality. The solid lines are
of slope20.245,20.155, and 1.63 from top to bottom.

FIG. 19. The semilogarithmic plot for the raioR against system
sizeL. The solid line isR51.44 exp(2L/12.9).
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6448 57HWANG, KWON, PARK, AND PARK
language, a domain wall between different spins is int
preted as a walker in the BAW model. Then the NKI mod
can be mapped exactly to the BAW model with two o
spring with a control parameter for the two walker annihi
tion process@27,38#.

We introduce a symmetry-breaking field that prefers
spins over down spins. So this field plays like an exter
magnetic field in the equilibrium Ising model. For conv
nience, we define the symmetry-breaking fieldh as a prob-
ability of not allowing an up spin to flip. Therefore the a
sorbing state with all spins up becomes the prefer
absorbing state. Again the parity in the total number of d
main walls is still conserved even with the symmetr
breaking field.

We run the defect dynamics and stationary simulatio
with h50.1. Our estimates arepc50.190(5), d50.17(1),
h50.32(1), andz51.25(5)~Fig. 20!, which agree well with
the standard DP value. Stationary simulations at critica
yield b/n'50.24(1), b/n i50.155(5), andn i /n'51.50(5)
~Fig. 21!, which also agree reasonably well with the DP v
ues.

FIG. 20. Plots of the effective exponents against 10/t for the
defect dynamics of the asymmetric NKI model withh50.1. Three
curves from top to bottom in each panel correspond top50.18,
0.19, and 0.20.
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V. SUMMARY AND DISCUSSION

All models studied in this paper~IMD, PCA, NKI! pre-
serve the parity of the total number of kinks but cross o
from the directed Ising~DI! to directed percolation~DP! uni-
versality class when the parity-conserving symmet
breaking field is introduced. As we argued in our prelimina
paper@29#, the essential factor that determines the univers
ity class of a nonequilibrium absorbing phase transition
not the conservation laws in dynamics but the symmetry
tween absorbing states.

We take a careful look at various kinds of kinks in the
models. First, consider the NKI model, which is the simple
one in the domain wall~or kink! representation. In the NKI
model, a kink is assigned between two neighboring spins
the opposite direction. Only one type of kink exists in t
NKI model and there is a two-to-one mapping between s
configurations and kink configurations. The two absorb
states correspond to the vacuum configuration in the k
representation. The evolution dynamics conserves the t

FIG. 21. The kink density in the quasisteady state against
system size, time dependence of the kink density atL5512, and
size dependence of the characteristic time are plotted for the as
metric NKI model withh50.1 at criticality. The solid lines are o
slope20.24,20.155, and 1.50 from top to bottom.
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57 6449CRITICAL PHENOMENA OF NONEQUILIBRIUM . . .
number of kinks modulo 2. By identifying a kink as a walk
in the BAW model, the NKI model can be exactly mapped
the BAW model with two offspring with a control paramet
for the two walker annihilation process@27,38#. Numerical
results @22,26# and recent field theoretical works for th
BAW models@39,40# suggest that the parity conservation
responsible for the DI universality class. The symmet
breaking field in the NKI model cannot be represented b
local kink operator in the field theory language, similar to t
magnetic field in the equilibrium Ising model in the Bloc
wall representation. Therefore the recent field theoretical
sults by Cardy and Ta¨uber @39,40# do not apply when the
symmetry-breaking field is introduced. In order to consid
the symmetry-breaking field, one should include the lon
range string operator, i.e., the global product of the num
operators of kinks in the quantum Hamiltonian, which b
comes a highly nontrivial problem. Our numerical resu
suggest that this long-range string operator is relevant
makes the system leave a DI fixed point and flow into a
fixed point by the renormalization-group transformations.

The PCA models are similar to the NKI models ev
though there seems no trivial mapping into the BAW mo
els. These models contain two types of kinks, which are
signed between two neighboring 1’s and 0’s, respectiv
There is no kink between 1 and 0, so the two absorbing st
correspond to the vacuum in the kink representation. Du
the parallel updating procedure, it is not easy to exam
whether these two types of kinks can be represented by
kink operator in the field theory. But the parity of the tot
number of kinks is conserved during the evolution. T
symmetry-breaking field that discriminates the eve
numbered and odd-numbered sites should be also re
sented by a long-range string operator like that in the N
model. However, theB model does not have any dynam
barrier between two absorbing states due to the oscilla
nature, so it is not affected by the symmetry-breaking fie
Except for that, we can draw the same conclusion for
PCA models as in the NKI model.

The IMD model has a more complex kink representat
due to its multicomponent nature. Three different types
kinks are found betweenB andB, B and 0, 0 and 0, whereB
is a site occupied by a dimer atom and 0 is a vacancy.
parity of the total number of kinks is conserved and t
symmetry-breaking field is similar to that in the PCA mo
els. Our numerical results show that the IMD model exhib
the same critical behavior as in the NKI and PCA model
may imply that the differences between various kinks in
IMD and PCA models are just irrelevant details that do n
affect the universal behavior. It may be interesting to stu
these differences in the field theoretical models.

Recently, a few other models have been introduced w
equivalent absorbing states. Those are generalized mono
monomer models studied by Bassler and Browne@30–32#,
and generalized Domany-Kinzel models and generali
contact processes studied by Hinrichsen@33#. These models
are multicomponent models so there are many types
kinks. Unlike the IMD model, there appears no explicit pa
ity conservation law in the kink representation of these m
els, even though they all have two equivalent absorb
states. Numerical simulations showed that these models
long to the DI universality class. By introducing a symmetr
-
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breaking field, these models cross over from the DI to
universality class as in the models studied in this pap
These results strongly support our conclusion that the s
metry between absorbing states, not the conservation law
the essential property to determine the universality class
the absorbing phase transitions. However, we do not exc
the possibility of the hidden conservation law in the kin
dynamics of these models. In their absorbing phase, num
cal simulations show that large domains of two different a
sorbing states are formed and active regions between
different domains~domain walls with finite width! survive
and diffuse until they annihilate pairwise@33#. It implies that
there may be an effective parity conservation law in dom
walls, even though there is no parity conservation in mic
scopic kinks. With the symmetry-breaking field, large d
mains of the unpreferred absorbing state completely dis
pear and domain walls~active regions! annihilate by
themselves.

In this paper, we also introduce and investigate vario
interface dynamics. Without the symmetry-breaking fie
we find new universal exponents ford in the type-B and
type-C interface dynamics, but the hyperscaling relation
the DI universality class is always intact. With th
symmetry-breaking field, the interface moves, in averag
with a constant velocity in the direction of the unpreferr
absorbing state. By focusing only on the side of the prefer
absorbing state, we find new exponents ford for the type-C
and type-D dynamics and the hyperscaling relation for t
DP universality class is obtained. These new exponents
also shown to be universal. These types of interface dyn
ics should be useful in studying some other models w
many but inequivalent absorbing states.

It is interesting to compare the two-dimensional equil
rium Ising model with the one-dimensional NKI model. It
well known that two-dimensional equilibrium models are r
lated to one-dimensional kinetic models via transfer ma
formalism @41#. An extra space dimension is interpreted
the time dimension in one-dimensional kinetic models. O
can write down the evolution operator of the kinetic mod
corresponding to a given two-dimensional equilibriu
model. This evolution operator is Hermitian for the equili
rium model. General nonequilibrium kinetic models in o
dimension can be obtained by modifying the above Herm
ian evolution operator in a non-Hermitian form, i.e., brea
ing the detailed balance. Then equilibrium models ind di-
mensions and nonequilibrium kinetic models ind21
dimensions can be directly compared.

The NKI model is a special case of general nonequil
rium kinetic Ising models. In the NKI model, the time reve
sal symmetry is broken completely and its dynamics fav
one time direction over the other. Therefore, by adding
directional sense in the time direction to the equilibriu
Ising model, one can see the crossover from the equilibr
Ising universality class to the nonequilibrium DI universali
class.

Similar things happen for the models with a single a
sorbing state that belong to the DP universality class. T
percolation problem is equivalent to theq→1 limit of the
q-state Potts model@42#. The DP problem is defined by add
ing a directional sense to the percolation problem. Simila
one can define nonequilibrium models withq equivalent ab-
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6450 57HWANG, KWON, PARK, AND PARK
sorbing states by adding a directional sense to theq-state
Potts model. Both models have the permutation symm
betweenq ground~or absorbing! states, so these nonequilib
rium models may be called as theq-state directed Potts
model. In this sense, the NKI model may be called the
rected Ising model and the NKI universality class as the
rected Ising~DI! universality class. It will be interesting to
set up and investigate the directed Potts models withq>3
@33#. Of course, other types of generalized models with
rotational or cyclic symmetry are also interesting.

There is a difference in connecting models with differe
values ofq. Crossover from the DI to the DP universali
class is obtained by introducing a symmetry breaking fie
But the Ising phase transition disappears when the magn
r,

r-
ry

i-
i-

e

t

.
tic

field is applied to the two-dimensional equilibrium Isin
model. The percolation universality class appears o
through the random cluster formulation of the Potts mo
@43#. Therefore the analogy between theq-state Potts mode
and theq-state directed Potts model is not complete. The
similarities and differences should be further investigated
the future.
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