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Infiltration through porous media

W. Hwang and S. Redner
Center for BioDynamics, Center for Polymer Studies, and Department of Physics, Boston University, Boston, Massachusetts

~Received 6 September 2000; published 24 January 2001!

We study the kinetics ofinfiltration in which contaminant particles, which are suspended in a flowing carrier
fluid, penetrate a porous medium. The progress of the ‘‘invader’’ particles is impeded by their trapping on
active ‘‘defender’’ sites which are on the surfaces of the medium. As the defenders are used up, the invader
penetrates further and ultimately breaks through. We study this process in the regime where the particles are
much smaller than the pores so that the permeability change due to trapping is negligible. We develop a family
of microscopic models of increasing realism to determine the propagation velocity of the invasion front, as well
as the shapes of the invader and defender profiles. The predictions of our model agree qualitatively with
experimental results on breakthrough times and the time dependence of the invader concentration at the output.
Our results also provide practical guidelines for improving the design of deep bed filters in which infiltration
is the primary separation mechanism.

DOI: 10.1103/PhysRevE.63.021508 PACS number~s!: 83.80.Hj, 47.55.Kf, 47.55.Mh
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I. INTRODUCTION

In depth filtration, suspended particles in a fluid are
moved during their passage through a porous medium@1,2#.
The basic dynamics of depth filtration is determined prim
rily by the pore structure of the filter, the particle size dist
bution, and various physicochemical and hydrodynamic
tails. If the particle size is larger than the typical pore si
particles get stuck relatively quickly. The permeability of t
filter decreases steadily during this process and drops to
when clogging is reached. This process is often referred t
sieving or straining@3#. Conversely, if particles are muc
smaller than the pore size and if particles are trapped on
the interfaces of the porous medium, the flow field is on
slightly affected by the trapping. The goal of this paper is
provide a general understanding of this latter process ofin-
filtration by microscopic network modeling.

Infiltration underlies many practical situations, such
underground waste disposal@4#, gas mask design, or drink
ing water filters@5#. Typically, submicrometer size contam
nant particles are suspended in a carrier fluid and fl
through a porous material, such as a sand filter whose typ
grain size is much larger than the contaminant particles
an ion exchange filter@5# where the contaminant size is mo
lecular in scale. In such cases, one can neglect the chan
the flow field due to particle trapping@4#, an approximation
that considerably simplifies theoretical analysis.

The kinetics of infiltration is controlled by the micro
scopic mechanisms for the trapping of the invader partic
Typically each pore can hold a limited number of partic

FIG. 1. Idealized picture of infiltration. Suspended particles
trapped at ‘‘defender’’ sites on pore surfaces. Once defenders
occupied, subsequent particles pass by freely.
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due to a finite surface area or a finite range of the surf
potential. When all the available surface area is covered
particles, subsequent invaders flow passively through the
ter without being trapped~see Fig. 1!. Our basic goal is to
understand the kinetics of this infiltration and the ultima
breakthrough of the invader, as well as the evolution of
invader and defender density profiles as functions of dow
stream position and time.

Previous work on infiltration in porous media has oft
been based on a macroscopic convection-diffusion equa
description, with reaction terms introduced to account
particle trapping@4,6,7#. Another approach has been to use
single absorbing sphere to calculate the collection efficie
at the initial stage of filtration@8#. While numerical simula-
tions of these models have some predictive power, it is h
to develop a connection between this macroscopic appro
and basic features of the microscopic process, such as
concentration profiles of the trapped and flowing particle

For filtration by straining, models based on a discrete n
work description of the filter medium are relatively well d
veloped@9–13#. To our knowledge, however, there has be
no microscopic network modeling work on infiltration. As i
the case of straining, a spatial density gradient natur
arises in infiltration, since particles begin to deposit at
upstream end of the filter and advance downstream as
filter gets used up. The density gradient is experimenta
observed as the time-dependent output concentration@6#. In
this paper, we will account for this basic experimental obs
vation by using a discrete network approach.

Practical questions raised by infiltration are the bre
through time, which is defined as the time for the outp
concentration to reach a specified threshold level, and
filter efficiency, which is related to the fraction of the filte
material actually used before breakthrough. Clearly, it is
sirable to use as much of the filter material as possible be
breakthrough occurs.

This paper is organized as follows. In Sec. II, we intr
duce the basic parameters that govern particle trapping
provide a qualitative picture of infiltration. In the following
sections, we construct a sequence of discrete models
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increasing complexity and realism to ultimately provide
lattice network description. In Sec. III, we discuss the case
a one-dimensional~1D! chain of trapping sites and, in Se
IV, we analyze infiltration in the bubble model to provide
mean-field-like description. Building on these results,
then turn to simulations of infiltration on tube lattice ne
works in Sec. V. We summarize and compare our res
with experiments in Sec. VI.

II. BASIC PICTURE

The two basic characteristics of particle trapping are
efficiency of an unoccupied trapping site and the numbe
trapping sites in a pore. We introduce the trapping proba
ity g as the probability that a particle is trapped upon e
countering an open collector site. The parameterg thus rep-
resents the strength of the particle-collector interaction
accounts for the possibility that contact between partic
and the filter grains may not necessarily lead to deposi
@14#. While this simplifies the complicated adsorptio
mechanism, later we show that basic features like the in
sion front propagation velocity~Fig. 2! is independent of the
interaction details.

Next we introduce the capacitycx(t) as the number of
particles a pore at positionx can hold at timet. In the case of
noncoagulating particles, which cannot get trapped on to
an already adsorbed particle, the initial capacity is prop
tional to the inner surface area of the pore and then decre
as the pore surface is covered by particles. For simplicity,
ignore multiple trapping on an already occupied collec
site as well as particle relaunching. The key factors that
termine the dynamic behavior of the system are geome
such as the capacity of a clean filter and the pore size di
bution, and kinematic, such as the particle concentration
the flow rate. More refined models for particle trapping c
be incorporated within our basic modeling.

Consider a generic infiltration process based on the ab
concepts. Initially a layer in the clean filter has a total cap
ity ctot independent of the downstream position. Att50, a
fluid that contains a mixture of invader and nonreact
tracer particles enters the filter whose flow rate is determi
by the steady-state solution of d’Arcy’s law. Tracer partic
passively follow the fluid motion and advance with the a
erage flow velocityv0. The width of the tracer density profil
spreads ast1/2 due to hydrodynamic dispersion~Fig. 2!. In-
vader particles first encounter clean collector sites. Beca
each such encounter leads to deposition with probabilityg,

FIG. 2. Infiltration profiles. Horizontal direction is downstream
The invader density profile~shaded! is exponential in the invaded
region, while the capacity profile has a power law tail,c;uju2l.
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the survival probability of the particles in this leading in
vaded region decreases exponentially with downstream p
tion as illustrated in Fig. 2. As particles advance and
trapped, the pore capacity decreases and subsequent pa
are more likely to survive, giving rise to an advancing inv
sion front with a velocityv,v0. In principle, the propaga-
tion velocity and shape of the front are functions of tim
However, at long times these features approach steady-
values. Another important feature is that the trailing edge
the capacity profile decays as a power of the dista
uju (j,0) from the invasion front whose location is de
fined, e.g., as the position wherec5ctot/2. For largeuju, any
reasonable definition for the front location can be used.

The existence of different propagation velocitiesv0 for
the pure fluid andv,v0 for the contaminant leads to purifi
cation of the liquid. The filter can be used until the invad
region reaches the outlet end. For a filter of lengthL, the
breakthrough time will be of the order ofL/v, so the amount
of throughput will be approximately proportional toLv0 /v.

III. ONE-DIMENSIONAL MODEL

As a preliminary, we study infiltration in a one
dimensional chain of identical pores atk50,1,2, . . . . First
we consider the case where each pore can accommodate
one particle and then we generalize to multiple capac
pores.

A. Single capacity pores

We choose a time unit such that one particle is injected
each discrete time step. Multiple particle injection leads t
different particle density and will affect only the overa
scale factor but not change qualitative features of the syst
The carrier fluid advances by one pore distance at each
step; that is, its velocity is unity. When particle trappin
occurs in a pore atk, the capacityck(t) changes permanentl
from 1 to 0. At timet, a particle at porek gets trapped in tha
pore with probabilityg if ck(t)51. A particle advances to
the next pore in one time step with probability 1 ifck(t)
50. Based on these elemental steps, we introduce the
lowing two probability densities:~i! pk(t), the probability
that a freely moving particle is in porek at timet; ~ii ! qk(t),
the probability that the pore at sitek is unoccupied, that is
ck(t)51. The corresponding master equations forpk(t) and
qk(t) are

pk~ t11!5pk21~12gqk21!, ~1!

qk~ t11!5qk~12gpk!, ~2!

where we drop the argumentt on the right hand side for
simplicity. Unless there is a possibility for confusion, we w
not write the argumentt in related formulas. Since a particl
advances to the next pore in one time step,pk(t11) depends
on pk21(t). The term (12gqk21) in Eq. ~1! is the probabil-
ity that the particle atk21 does not get trapped by an uno
cupied pore also atk21. Similarly, the term (12gpk) in
8-2
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INFILTRATION THROUGH POROUS MEDIA PHYSICAL REVIEW E63 021508
Eq. ~2! is the probability that porek does not trap a free
particle at timet. The initial and boundary conditions fo
these equations are

pk>1~0!50, qk~0!51; p0~ t !51, q`~ t !51. ~3!

If the trapping probabilityg is small, a particle can ad
vance many pores without being trapped, so thatpk(t) and
qk(t) vary slowly in space and time and a continuum a
proximation can be applied. Lettingk11→x1dx and t11
→t1dt, Eqs.~1! and ~2! become, to lowest order,

] tp1v0]xp52gpq,
~4!

] tq52gpq,

wherev0[dx/dt51, andg→g/dt is a redefinition of the
trapping probability in units of the infinitesimal time incre
ment.

In a comoving reference framej[x2vt, with v the in-
vasion front propagation velocity shown in Fig. 2~which is
yet to be determined!, Eqs.~4! become

~v02v !]jp1] tp52gpq, ~5!

2v]jq1] tq52gpq. ~6!

Let us first examine the steady-state solution of Eqs.~5!
and ~6!. Setting the time derivatives to zero, subtracting E
~6! from Eq. ~5!, and integrating with respect toj gives

~v02v !p~j!1vq~j!5const. ~7!

The integration constant can be determined by applying E
~3! in the comoving frame. Asj→2`, p→1, q→0, and
as j→`, p→0, q→1. These immediately givev5v0/2
50.5. Note thatv is determined entirely from the bounda
condition~andv0) in the comoving frame, and not from th
interaction strengthg. This feature continues to hold for a
the models in this paper.

Using Eq. ~7! with v5v0/2, Eqs. ~5! and ~6! can be
solved to give

p~j!5
1

11ej/j0
, q~j!5

1

11e2j/j0
~8!

~Fig. 3!. Thusj0[v0/2g is the characteristic widthw of the
profile. Notice also that the profiles ofp andq are symmetric
about their intersection. We verified both the dependenc

FIG. 3. Steady-state profile in the single capacity model.
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the width ong and the profile shape predicted by Eq.~8! by
numerical integration of the master equations~1! and ~2!.

One subtle point is the rate of approach to the steady s
First, we find that the asymptotic propagation velocityv
5v0/2 is reached before the asymptotic profile is establish
This arises becausev is determined by the boundary cond
tions, and not by interaction details. We also verified t
feature numerically. Adopting this asymptotic velocity, Eq
~5! and~6! are then symmetric inp andq. In fact, the system
is identical to two-species annihilation,A1B→0, where
each species is ballistically injected from opposite sides w
velocity 1v0/2 for theA’s and2v0/2 for theB’s.

Thus most of the time variation in Fig. 3 occurs in th
reactive region of widthw, wherew50 at t50. Integrating
Eq. ~5! from 2j1!0 to j2@0 gives

2
v0

2
1] tE

2j1

j2
p dj52gE

2j1

j2
pq dj. ~9!

The integral on the left hand side is the area under the cu
p(j) between2j1 and j2, whose time dependence main
comes from the change inw. On the right hand side, the
integral is approximately proportional tow, sincepq is sig-
nificantly different from zero only in the reactive region. W
can then rewrite Eq.~9! as

2
v0

2
1c1] tw.2gc2w, ~10!

wherec1 andc2 are constants. Integrating Eq.~10! and ap-
plying the conditionw(`);v0/2g gives an exponential de
cay to the steady statew(t);(v0/2g)(12e2c2gt).

It is worth emphasizing that the symmetry between
invader and defender is generally responsible for the rela
v5v0/2. At the inlet, invaders are injected with velocityv0,
and the invasion front advances with velocityv, with one
invader particle annihilating with one defender site. In t
reference frame moving with velocityv0, the situation is
reversed. The invaders are at rest and defenders are inje
with velocity v0 from the opposite direction. Therefore th
invasion front advances with velocityv02v. Since these two
reference frames describe the system in the same way
front velocities should be the same; that is,v5v02v, or v
5v0/2.

B. Multiple capacity pores

Now we consider the case where each pore can trapM
particles, that is, the initial pore capacity isck(0)5M . We
again follow the previous rules of injecting a single partic
and advancing a particle by one pore (v051) at each time
step. Multiple particle injection or different injection inter
vals again simply change the overall concentration and t
scale.

In a multiple capacity pore, the probability of encounte
ing an open trap in a pore needs to be considered, in add
to the trapping probabilityg upon encounter with an ope
trap. Generally, the encounter probability decreases as m
particles get trapped, since the inner pore surface area a
8-3
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W. HWANG AND S. REDNER PHYSICAL REVIEW E63 021508
able for trapping shrinks. When fluid mixing within a pore
weak, a particle can encounter only one trap, either ope
occupied. Then the encounter probability is approximat
proportional to the fraction of the open surface area. On
other hand, if the mixing is perfect, a particle encounters
the available traps in a pore before exiting.

For practically relevant situations, pores are sufficien
short so that a particle in a pore follows streamlines with
transverse diffusive mixing@15#. In what follows, we con-
sider this limit of weak mixing. For a pore withn out of M
traps available, the encounter probability isn/M , and the
overall trapping probability of this pore isTn[gn/M . In
writing this expression, we ignore the possibility that a p
ticle far from the pore wall does not encounter any traps
Sec. VI, we argue that this volumetric effect does not cha
the basic behavior of infiltration.

To describe the evolution of the system, we use the sa
single particle probability densitypk(t) as in the single ca-
pacity pore system, but modify the probability density for t
capacity as follows:qk

n(t) is the probability that a pore a
position k containsn open traps. This is the same as t
probability thatck(t)5n, for 0<n<M . Following similar
reasoning as that applied to deduce Eqs.~1! and ~2!, the
master equations forpk(t) andqk

n(t) are

pk~ t11!5pk21Fqk21
0 1 (

n51

M

qk21
n ~12Tn!G , ~11!

qk
n~ t11!5qk

n~12pkTn!1pkqk
n11Tn11 . ~12!

In Eq. ~11!, qk21
0 (t) accounts for the case that the porek

21 has zero capacity. Other terms in Eq.~11! correspond to
cases when the capacity is different from 0, with (12Tn) the
survival probability for each case. In Eq.~12! qk

n(12pkTn)
is the probability that the pore with capacityn does not trap
a particle, andpkqk

n11Tn11 is the probability that the capac
ity decreases fromn11 to n by a particle trapping event
Hence the last term is absent whenn5M .

We simplify Eqs.~11! and ~12! by introducing theaver-
age capacityof a pore at positionk,

Qk~ t ![ (
n51

M

nqk
n~ t !. ~13!

This gives the average number of sites still available
trapping in the pore. Now by multiplying Eq.~12! by n,
summing from 1 toM, and using(n51

M qk
n(t)512qk

0(t), we
obtain

pk~ t11!5pk21S 12
g

M
Qk21D , ~14!

Qk~ t11!5QkS 12
g

M
pkD . ~15!

These are identical in form to Eqs.~1! and ~2!, so the same
steady-state analysis applies. We transform to a como
frame and take the continuum approximation to reduce
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rate equations to Eqs.~5! and ~6! with g→g/M andq→Q.
The boundary conditions are also the same as in the cas
single capacity pores, exceptQ(j→`)5M . Combining
these results gives

v5
v0

11M
, w~`!;

v0M

g~11M !
. ~16!

Notice that forM51 Eq. ~16! reduces to the single capacit
case, while forM→`, v→0. This means that there is n
steady state for the case of infinite capacity pores.

We can generalize the symmetry argument given in
single capacity case to find the propagation velocity in E
~16!. At the input, the flux of invaders moving with the ca
rier fluid is equal to 13v0. Similarly, in the reference frame
moving with velocity v0, the flux of defenders isM3v0,
while the invaders are at rest. Because one invader ann
lates with one defender, the two particles are kinetically
distinguishable. Therefore, if a particle flux of 13v0 results
in a front moving with velocityv, the front velocity pro-
duced by a flux ofM3v0 should beMv, which, in turn,
equalsv02v in the moving reference frame. By this equiv
lence, Eq.~16! immediately follows.

In the limit of perfect mixing, a particle encounters a
traps in the pore. The overall trapping probability withn
open traps is thenTn512(12g)n. In the limit of small
g, Tn.gn; thus the analysis is exactly the same as in
poor mixing case except without the factor 1/M in Tn . The
propagation velocity of the front is the same as in Eq.~16!,
since this velocity is independent of trapping mechanis
while the width varies asw;v0 /g(11M ). Notice thatw is
a decreasing function ofM. This arises because a partic
must survive all the traps in a pore before advancing to
next pore. Finally, for a mixing mechanism that is interm
diate between the two limits of perfect and poor mixing, t
propagation velocity will bev0 /(11M ), while the width of
the front will lie between the limiting values ofv0 /g(1
1M ) andv0M /g(11M ).

IV. THE BUBBLE MODEL

We now study the bubble model as a logical next s
toward understanding infiltration in porous media. T
bubble model was introduced to account for the breaking
fibers @16#, extremal voltages in resistor networks@17#, and
later filtration kinetics@11#. The bubble model consists ofL
‘‘bubbles’’ in series, each of which is a parallel bundle ofw
tubes, with each tube representing a pore~Fig. 4!. A bubble
can be viewed as a single layer of parallel bonds in a lat
with all the ends ‘‘shorted.’’ This model has multiple path
as in real porous media, and is sufficiently simple to

FIG. 4. The bubble model consists ofL bubbles connected in
series, each bubble withw tubes.
8-4
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INFILTRATION THROUGH POROUS MEDIA PHYSICAL REVIEW E63 021508
amenable to analytic study. A useful feature of the bub
model is that for straining dominated filtration this mod
predicts similar behavior to that of lattice networks@11#.

We choose the tube radii in the bubble model from
Hertz distribution

f ~r !52are2ar 2
, ~17!

where a21/2 is the characteristic pore radius. This form
often seen in experimental pore size measurements@18# and
has been used for modeling the pore size distribution in
ters @3,11#. For simplicity we assume identical tube lengt
and measure downstream distance in units of the tube len
which is set equal to 1. We also assume that the flow rat
a tube of radiusr is proportional to2r m¹P, where¹P is
the pressure gradient along the tube andm depends on the
nature of the flow, withm54 corresponding to Poiseuill
flow and m52 to Euler flow. Perfect mixing is assumed
each node. A particle chooses a tube in the next downstr
bubble according to theflow induced probabilityF(r ),

F~r !5
r m

E dr8 f ~r 8!r 8m

, ~18!

in which the probability of choosing an outgoing tube
radius r is proportional to the flow rate into the tube,r m

@11,13#.
Since tubes of different flow velocities give the domina

mechanism for dispersion, the radial dependence of the l
flow velocity in a tube~Taylor dispersion! is ignored. Thus
we assume that a particle moves with the average flow
locity v(r ) along the tube. We now investigate the hydrod
namic dispersion of passive Brownian particles which
carried by the background fluid in the bubble model, in t
absence of any trapping. This will provide the concepts a
tools necessary to understand infiltration in the bub
model.

A. Hydrodynamic dispersion in the bubble model

In the largew limit, each bubble is nearly identical, an
we can regard the particle motion as a directed random w
in which the average residence timetk in bubble k (k
50,1,2, . . . ) is arandom variable whose distributionR(t) is
related to the flow induced entrance probabilityF(r ) and the
radius distributionf (r ). This random walk description of th
continuous particle motion introduces an additional stoch
ticity into the system. However, we will show below that th
only modifies the hydrodynamic dispersion coefficient by
overall multiplicative factor.

The master equations forpk(t), the probability that there
is a particle in thekth bubble at timet, are

dp0

dt
5rf2

p0

t0
,

dpk

dt
5

pk21

tk21
2

pk

tk
. ~19!

Herer is the initial particle number concentration,f is the
~constant! flow rate, and the initial condition ispk(0)50 for
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all k. Since the flow rate does not change in infiltratio
constant pressure drop and constant flow rate conditions
equivalent.

The particle transport properties can be obtained in te
of the residence time distributionR(t), namely, the probabil-
ity that a particle spends a timet in a bubble. This residence
time distribution is related to microscopic distributions by

R~t!5E
0

`

dr F~r ! f ~r !dS t2
1

v~r ! D , ~20!

whered(x) is the Dirac delta function. Since the flow ra
into a tube of radiusr is fF(r ), the average flow velocity
v(r )5fF(r )/pr 2. Using this together with Eq.~17! for
f (r ), we obtain the first two moments oft,

^t&5E
0

`

t8R~t8!dt85
p

fa
[

V

f
, ~21!

^t2&5^t&2GS 11
m

2 DGS 32
m

2 D , ~22!

whereV5^pr 2& is the average tube volume~recall that the
tube length is fixed to be 1! andG(x) is the gamma function.

We solve Eq.~19! in the Appendix by the Laplace trans
form technique. From this solution, the average propaga
velocity and the width of the front are

v0.
1

^t&
, ~23!

w.H t

^t& F2GS 11
m

2 DGS 32
m

2 D21G J 1/2

[~D it !
1/2.

~24!

Thus we see that the dispersion coefficient is proportiona
the average flow velocitŷt&21. When m52 ~Euler flow!,
the flow velocities in all the tubes are identical and the
should be no dispersion. However, Eq.~24! gives a nonzero
dispersion coefficient. As mentioned above, this arises fr
the stochasticity of the random walk picture for the partic
motion. For the practically relevant case ofm.4, the effect
of this stochasticity is only to change the dispersion coe
cient by a factor of order unity.

B. Infiltration in the bubble model

To describe infiltration in the bubble model, we need
specify the particle motion, the tube capacities, and part
trapping in a tube. For the particle motion we again assu
that a particle chooses a tube according to flow indu
probability and then advances with the average flow veloc
v(r ) of this tube. The capacity of a tube is proportional to
inner surface area, which is proportional to the tube rad
since all tubes have the same length. Last, the overall t
ping probability of a tube is equal to the microscopic tra
ping probabilityg multiplied by the fraction of open traps in
a tube~Sec. III B!.
8-5
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W. HWANG AND S. REDNER PHYSICAL REVIEW E63 021508
To simulate this process efficiently we propagate
probability distribution function~PDF! of the suspended par
ticles rather than simulating the motion of individual pa
ticles @19,20#. The PDF propagation therefore provides t
exact distribution of particle positions and tube capacities
a single realization of tube radii. Conceptually, the PDF
gorithm is equivalent to an exact integration of the mas
equations.

To implement the PDF propagation, we definepk
b(t), the

probability that there is a particle at theentranceof tubeb in
bubblek (b51,2, . . . ,w, k50,1,2, . . . ); ck

b(t), the capac-
ity of tube b in bubble k. Since particles generally hav
different velocities, their positions could be anywhere with
a tube. We simplify this by forcing particles toalwaysbe at
the tube entrance by adjusting the time unit and the P
propagation so that theaverageparticle position is at the
correct location along the tube, as illustrated in Fig. 5.

To construct the particle motion, let us temporarily dis
gard particle trapping. We set the time increment to bedt
51/vmax, wherevmax is the maximum flow velocity among
all tubes. In a timedt, a particle at the entrance of the faste
tube should traverse the entire tube length, which is equa
1. We then let a particle in a slower tube, with velocityvk

b

,vmax, travel a distance 1 with probabilityuk
b[vk

b/vmax, or
remain fixed with probability 12uk

b . One can regarduk
b as a

normalized flow velocity. By construction, such a partic
travels the correct average distance in timedt, 13uk

b

103(12uk
b)5vk

b/vmax5vk
bdt.

Let us now recast this random walk into a probabil
propagation algorithm. Consider an element of the PDF
is at the junction before thekth bubble. Before any particle
motion occurs, we split this probability element among t
downstream bonds in this bubble according to the flow
duced probability at the tube entrance. We can view
probability element as advancing infinitesimally into ea
bond, as indicated on the left side of Fig. 5. Once this ini
tube assignment is made, the probability element rem
within its assigned tube until it reaches the next junction

Now consider the motion of a probability element that h
just entered a particular bond. After a timedt, a fractionuk

b

of the PDF is advanced to the next bubble, while a fract
12uk

b remains fixed at the entrance to bondb.
Due to the filtration, a fraction of the flowing PDF be

comes trapped in tubeb in the kth bubble at a rate that i
proportional to the tube capacityck

b(t). The overall trapping

FIG. 5. Propagation of the PDF in tubeb at bubblek. ~1! Initial
probability elementpk

b(t). ~2! Fraction remaining.~3! Fraction
trapped.~4! Fraction advancing. This last element enters the n
bubble and is then immediately split among the tubes accordin
the flow induced probabilities.
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probability of this tube is thereforeTk
b5gck

b(t)/ck
b(0). After

trapping has occurred, the tube capacity is decremented
cording to the following prescription. When one unit of PD
~equivalent to one particle! gets trapped, we define the bon
capacity to be decreased byD. ThereforeD is just the sur-
face area covered by one particle. Correspondingly,ck

b(0)/D
equals the number of particles the tube can accommoda

Our algorithm for propagating an element of probabil
at the entrance to bondb in the kth bubble over a timedt
therefore consists of the following steps~Fig. 5!:

~1! The fraction of PDF remaining at the start:
pk

b~12uk
b! .

~2! The fraction trapped in tubeb:
pk

buk
bTk

b .
~3! The fraction advancing to the next junction:

pk
buk

b~12Tk
b!.

~4! The capacity change of the tube by trapping:
2D3@pk

buk
bTk

b#.
The rate equations that account for these steps are

pk
b~ t1dt !5pk

b~12uk
b!1Fk

b (
b851

w

pk21
b8 uk21

b8 ~12Tk21
b8 !,

~25!

ck
b~ t1dt !5ck

b2Dpk
buk

bTk
b . ~26!

The first term on the right hand side of Eq.~25! is the frac-
tion of probability that does not move, and the second term
the contribution from elements of probability that has mov
from the previous site. The flow induced probabilityFk

b in
Eq. ~25! accounts for the fraction of PDF that enters in
tubeb.

To test this approach, we setg50 ~no trapping! in the
above rate equations and simulate the PDF propagation
this method, we find a traveling front whose basic propert
coincide with the hydrodynamic dispersion results given
Eqs.~23! and ~24!.

It is also worth mentioning that our PDF algorithm can
generalized to allow for hopping a distance that is a fract
of the tube length. In this manner one can account for diff
ent longitudinal flow velocities at different radial position
within a tube~Taylor dispersion@7#!. In the limit of an in-
finitesimal hopping distance, continuous particle motion
reproduced by the PDF algorithm. Unfortunately, the gain
having a more accurate description of the motion is offset
the complexity of the algorithm and the large increase in
computation time.

C. Asymptotic behavior

To obtain the average invasion front profile over the tub
in each bubble, we define the bubble-average quant
Pk(t)[(1/w)(bpk

b(t) and Qk(t)[(1/w)(bck
b(t). We first

derive the invasion front velocity via the symmetry argume
of Sec. III B. A rigorous derivation of the front velocity from
the master equations forPk(t) andQk(t) is given in @21#.

The carrier fluid is moving with velocityv0 @Eq. ~23!# and
the input flux of invaders per tube is equal tov0rV, sincerV
is equal to the number of invader particles per tube volu

t
to
8-6
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INFILTRATION THROUGH POROUS MEDIA PHYSICAL REVIEW E63 021508
in the input fluid. On the other hand, in a reference fra
moving with velocityv0, the input flux of defenders is equa
to v0M where M[^r &/D is the average initial number o
invaders a tube can accommodate. Following the argum
in Sec. III B, we find that the front velocitiesv andv02v in
the two reference frames are related byMv5rV(v02v),
yielding

v
v0

5S 11
M

rVD 21

. ~27!

Good filter performance means that the breakthrough t
is long or, equivalently, that the propagation velocity is slo
Equation~27! implies that the propagation velocity can b
made small by increasing the capacity of a pore, or by
creasing either the filter grain size or the input particle c
centration. Notice that neither the reaction strengthg nor the
nature of the flow@throughv(r );r m22# affects this propa-
gation velocity.

We now study the asymptotic density profiles. Instead
working directly with the averaged quantitiesPk(t) and
Qk(t), we first focus on the behavior of a single tube
radiusr, since tubes with the same radius in a bubble h
identical time dependence. The asymptotic profiles can
obtained after averaging over the distribution of tube ra
Therefore, we label tubes according to their radii instead
the indexb. We denote bypk(t;r ) andck(t;r ) the PDF and
capacity of a tube of radiusr in the kth bubble.

Let us first focus on the PDF profile in the invaded regio
Here, traps are mostly unoccupied, so that the tube capa
ck(t;r ) is approximately equal to its initial valueck(0;r ),
which is proportional to the tube radius, and we set it eq
to r. The arbitrariness in the unit of capacity can be co
trolled by the magnitude of the parameterD. Then Eq.~25!
becomes

pk~ t1dt;r !.pk~ t;r !@12u~r !#

1~12g!F~r !E dr8 f ~r 8!pk21~ t;r 8!u~r 8!,

~28!

where the integration overr 8 replaces the summation ove
the tube index. The flow induced probabilityF(r ) and nor-
malized velocityu(r ) are independent of the downstrea
positionk because these depend only on the radius of a tu

The equation forP(x,t) can be obtained by multiplying
Eq. ~28! by f (r ) and integrating overr. As in Sec. III, we
take g!1 and consider the continuum limit. If we redefin
the length of the bubble from 1 todx, dt becomesdx/vmax.
Integrating Eq.~28! and expanding indt anddx yields

dt ] tP~x,t !52E dr f ~r !u~r !@dx ]xp~x,t;r !1gp~x,t;r !#.

~29!

Here, we use*dr f (r )F(r )51. Dividing Eq. ~29! by dt
changesu(r ) back to v(r ). After redefiningg→g/dx as
before, we obtain
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] tP.2E dr f ~r !v~r !@]xp~x,t;r !1gp~x,t;r !#. ~30!

In the steady-state comoving frame, Eq.~30! becomes

v]jP.E dr f ~r !v~r !@]jp~j;r !1gp~j;r !#. ~31!

Since only a small number of particles have entered
invaded region, the density of moving particles is appro
mately proportional tor m, and we introduce the ansat
p(j;r )5r mg(j) to factorize the PDF. In order to calculat
the dominant contribution from the integral in Eq.~31!, we
substitutev(r )5v01dv(r ), where dv(r ) is the deviation
from the average carrier fluid velocityv0. Sincedv(r ) has
zero mean, the dominant contribution to the integral o
v(r ) in Eq. ~31! comes from the constant partv0. Using
these approximations in Eq.~31!, and using P(j)
5^r m&g(j), we find

vg8.v0~g81gg!. ~32!

Sincev,v0, we find g(j);exp@2v0gj/(v02v)#. Hence the
profile of free particles in the invaded regionP(j) decays
exponentially inj, with a characteristic decay length that h
the same 1/g dependence as in the 1D model.

Let us now turn to the analysis of the capacity profile
the tail region. In terms ofp(x,t;r ) and c(x,t;r ), Eq. ~26!
becomes

] tc~x,t;r !52Dgp~x,t;r !v~r !
c~x,t;r !

r
. ~33!

Since there is negligible trapping in the tail region, the p
ticle motion follows that of the carrier fluid. Thusp(j;r )
.pr 2r, wherepr 2 is the tube volume, and the flow velocit
is v(r )5fF(r )/pr 25fr m22/p^r m&. Substituting these in
Eq. ~33! and transforming into the comoving frame gives

]jc~j;r !.srm21c~j;r !, ~34!

wheres[Dgrf/v^r m& denotes the strength of the partic
trapping reaction. We now integrate Eq.~34! from 2j1!0
to j2'0 and use the boundary conditionc(j2 ;r ).r to ob-
tain

c~j;r !.re2srm21uju, ~35!

where we drop the subscript ofj1.
Finally, the average bond capacity as a function of po

tion with respect to the front,Q(j), is

Q~j!5E dr f ~r !c~j;r !.2aE dr r 2e2srm21uju2ar 2
.

~36!

For largeuju, the integral is dominated by the smallest tub
and the initial distribution of tube radii is irrelevant in the ta
region. Hence the factorar 2 in the exponential can be ig
nored. Performing the resulting integration gives
8-7
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Q~j!;
~suju!23/(m21)

~m21!
GS 3

m21D}~guju!2l, ~37!

where the last relation serves to define theprofile exponent
l. This is one of our primary results. Correspondingly, t
PDF in the tail region will approach its initial value with th
same power law.

The existence of the power law tail in the capacity profi
stems from the fact that the flow rate is not affected by tr
ping. Thus when large pores are ‘‘used up,’’ the fluid s
predominantly flows through these pores, leading to a s
stantial unused capacity in the smaller tubes. It is these
used smaller tubes that contribute substantially to the ca
ity profile in the tail region. This mechanism is quite gene
and depends only weakly on the form of the radius distri
tion. For example, for a uniform distribution in the ranger
5(0,1), we obtainl52/(m21). However, if there is a finite
lower cutoff in the radius distribution, the PDF will have a
asymptotic exponential tail.

It is interesting to note that the density profile has diffe
ent dependence ong in the invaded and tail regions. From
Eq. ~37!, the density profile contains an overall factorg2l.
Thusg typically does not appear as an overall scale facto
the entire profile, as in the invaded region. However, for
practically relevant case ofm54, the exponent in Eq.~37! is
equal to 1, andg becomes the overall scale factor of th
profile.

D. Numerical results

In our numerical simulations, we set the input particle fl
per tuberf equal to 1, which means thatw units of PDF are
injected into the system at every time step. This can
achieved by choosingr51/p andf5p, which also makes
v05a @Eqs.~21! and ~23!#.

We applied the PDF propagation of Eqs.~25! and~26! to
a system of sizew3L520031024. Due to the exact natur
of the PDF algorithm, a single realization provides go
quality data forw5200 tubes. A system length ofL51024
is sufficiently long to give the continuum functional form o
the profiles. All the data shown below are results of sin
realization of tubes including the network simulation in t
next section. The simulation is stopped before the front e
the system.

1. Density profiles

Figure 6 shows typical particle and tube capacity profil
There are strong bubble-to-bubble fluctuations and so
type of smoothing procedure is necessary. We use
Savitzky-Golay smoothing technique, which approxima
successive windows of data points to a fourth order poly
mial ~solid lines in the figure! @22#. This technique is supe
rior to local averaging because Savitzky-Golay smooth
can faithfully follow rapid changes in the profile, as can
seen in Fig. 6. This smoothing is also useful in estimating
exponents. Since the logarithm of the profile in the tail
gion amplifies the fluctuation in nonlinear way, the slopes
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the raw data in Fig. 8 are larger than those from t
smoothed data, and differ from the predicted value of
profile exponentl.

2. Front velocity

Figure 7~a! shows the front position, defined as the po
wherePk(t) is half of its saturation value, versus time. N
tice that a constant front propagation velocity sets in alm
immediately. Withr51/p andf5p, Eq. ~27! gives

v
v0

5
1

11Apa/2D
. ~38!

The slopes in Fig. 7~a! agree well with Eq.~38!. Notice that
the propagation velocity does not depend on the reac
strengthg nor the exponentm in the radius dependence o
the velocity.

FIG. 6. Normalized profiles for a single realization. Paramet
used arem54, a51, g50.1, andD50.4. Gray lines are raw
data, black lines are smoothed.

FIG. 7. Front position vs time for different microscopic param
eters for ~a! the bubble model and~b! the square lattice. Filled
circles are for the same parameters as those in Fig. 6. Other
modify these parameters as indicated in the legend. The stra
lines are linear fits to the data with slopes of~a! 0.33, 0.32, 0.31,
0.19, 0.12, and~b! 0.32, 0.32, 0.31, 0.19, 0.12, from top to bottom
The corresponding velocities predicted by Eq.~38! are 0.311, 0.311,
0.311, 0.184, and 0.119.
8-8
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INFILTRATION THROUGH POROUS MEDIA PHYSICAL REVIEW E63 021508
3. Tail profile

Figure 8~a! shows the tube capacity profileQ(j) in the
tail region as a function of the distanceuju (j,0) from the
front on a double logarithmic scale. The plot becom
straight for largeuju and the slope in this region correspon
to the exponentl53/(m21) predicted by Eq.~37!. For the
uniform distribution on (0,1), we predicted the profile exp
nent to bel52/(m21). For m54, the exponent value o
2/3 agrees well with our simulations~Fig. 9!. However, for a
radius distribution with a lower size cutoff, we expect
exponential density profile~inset to Fig. 9!.

As we also discussed in Sec. IV C, the amplitude of
density profile in the tail region typically has a power-la
dependence ong. For a Hertz distribution of particle radii
this amplitude should be proportional tog2l according to
Eq. ~37!. Thus Fig. 10~a! showsQ(j)1/luju versus 1/uju for
m54 andm53. Values of the abscissa should be prop
tional to 1/g, which is indeed the case.

FIG. 8. Tube capacity profile in the tail region on a doub
logarithmic scale form54, 3, and 2~top to bottom!. Other param-
eters are the same as in Fig. 6.~a! Bubble model: The slopes of th
data in straight region are 0.97~1!, 1.49 ~1.5!, and 3.17~3!. The
numbers in parentheses are the prediction 3/(m21). ~b! Square
lattice: Solid lines are smoothed data. The thick straight lines
linear fits, with slopes 0.95, 1.07, and 1.28.

FIG. 9. Tube capacity profile on a double logarithmic scale fo
uniform radius distribution on (a,b). Parameters other than the r
dius distribution are the same as in Fig. 6. The slope of the stra
region for (a,b)5(0,1) is 0.63~predicted value 2/3!. Inset: log-
normal plot when (a,b)5(0.3,1.3).
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4. Invader profile

Figure 11~a! is a log-normal plot of the invader profile
P(j) ~raw data! versusj. The slopes of the two data sets a
in excellent agreement with the predicted valuev0g/(v0
2v) from Eq. ~32!. In the invaded region, since there a
few particles present, the corresponding PDF monotonic
decreases and its fluctuation is significantly smaller than
the tail region.

V. SQUARE LATTICE NETWORK

We now consider infiltration on a square lattice netwo
of tubes. Here, local mixing at tube junctions occurs as
posed to the mean-field-like mixing in the bubble mod
Nevertheless, many of our predictions from the bub
model continue to be valid for the lattice network. For e
ample, we expect that the propagation velocity given by

re

a

ht

FIG. 10. Dependence of the capacity profile in the tail region
g. Only smoothed data are shown. Solid curves:m54, dashed
curves:m53. Thick curves:g50.05, thin curves:g50.1. Other
parameters are the same as in Fig. 6.~a! Bubble model: The value
l53/(m21) is used.~b! Square lattice: From Fig. 8~b!, l50.95
for m54 and 1.07 form53 are used. Notice that the abscis
values are proportional to 1/g from Eq. ~37!. Arrows are guides to
the eye.

FIG. 11. Log-normal plot of the invaded region. The same d
sets as in Fig. 10 are used. The slopes of the straight regions
from left to right, ~a! bubble model: 0.152, 0.150, 0.0744, 0.074
and ~b! square lattice: 0.152, 0.155, 0.0756, 0.0773. The co
sponding values of the slope fromv0g/(v02v) are 0.145 and
0.0726.
8-9
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W. HWANG AND S. REDNER PHYSICAL REVIEW E63 021508
~27! will continue to hold in the lattice network because it
determinedonly by the boundary conditions of the partic
flux and initial filter capacity. We also find numerically th
the network model has both the same exponential inva
profile and the same power-law capacity profile as in
bubble model, although the values of the amplitudes
decay exponents are different. Overall, it appears that
bubble model provides an excellent account of the numer
results from the lattice network.

A. The model

We study a square lattice of sizew3L520031024
which is tilted at 45°. A periodic boundary condition is im
posed in the transverse direction. The tube radii are dra
from the Hertz distribution of Eq.~17!. Notice that the
bubble model would arise from this system by merging
gether all sites at the same longitudinal position. The ove
flow rate f is set top and the particle density tor51/p,
just as in the bubble model.

For a given set of tube radii, the flow field is calculated
using the conjugate gradient method@22# to solve the set of
linear algebraic equations for fluid conservation at ea
node. The tolerance of the computation is set so that
measured average PDF and the tube capacity in thekth layer
are accurate to within 0.01%. After the flow field is solve
we use the same PDF algorithm as in the bubble mode
track the motion of the suspended particles. The new feat
due to the lattice nature of the network are that tubes are
locally connected and that the local flow direction is n
always downstream.

B. Numerical results

To facilitate comparisons, all our numerical results for t
bubble model and the square lattice are presented sid
side. Figure 7 shows the front position versus time for b
the bubble model and the square lattice. The square la
results are in excellent agreement with the bubble model
diction for the front velocity, Eq.~38!. Similarly, the tube
capacity profile exhibits a power-law tail@Fig. 8~b!#. How-
ever, the dependence of the decay exponentl on m is much
weaker than in the bubble model. Asm decreases from 4 to
2, l increases slowly from 0.95 to 1.28.

To isolate the dependence of the capacity profile on
trapping probabilityg, Fig. 10~b! showsQ(j)1/luju versus
1/uju in the tail region. Here, the values ofl used are ob-
tained from Fig. 8~b!. Unlike in the bubble model, the overa
amplitude has a relatively stronger dependence onm. How-
ever, the dependence on 1/g still holds even in the network
case. It seems that in the square lattice networkm has more
effect on the amplitude of the tail than on the decay ex
nent.

Lastly, Fig. 11~b! shows the density profile of invaders
the invaded region. The slopes of these particles are alm
identical to those of the bubble model. Currently we do n
have a clear explanation of this fact. It seems that the
work geometry does not affect the profile. In fact, the ch
acteristic decay length, (v02v)/v0g, of the profiles in Fig.
11 is the same as that of the corresponding 1D model in S
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III B where rV invaders are injected with velocityv0 into
the chain of defenders of capacityM.

VI. SUMMARY AND DISCUSSION

In this paper, we studied infiltration, in which suspend
particles are removed from a carrier fluid as the suspen
passes through a porous medium. The trapping mechan
has a built-in saturation so that once all available trapp
sites are used up subsequent particles can pass throug
medium freely. The particles are assumed to be sufficie
small that their trapping does not change the flow rate. T
basic dynamical properties of this infiltration process are
density profile of the invader particles and the capacity p
file of the remaining active pores. When the invader pro
reaches the end of the system, the output concentratio
particles quickly increases to a saturation level and the fi
should be discarded. Thus the features of this profile
important in understanding the operating characteristics
infiltration.

We have developed a series of discrete network mode
describe the basic characteristics of infiltration, starting w
a one-dimensional model and building up to the bub
model, which is a series array of parallel, multiple capac
tubes. The advantage of these quasi-one-dimensional mo
is that they remain relatively simple, even after incorporat
local spatial heterogeneity. The bubble model, in particu
appears to capture many of the quantitative features tha
observed in numerical simulations of infiltration on a squa
lattice tube network. Our modeling is also flexible, so th
variations can be easily implemented for case-specific si
tions.

Our main qualitative result is that basic dynamical fe
tures of the system, including the value of the front prop
gation velocity, the exponential profile of flowing particles
the invaded region, and the power-law capacity profile
pores in the tail region, are relatively insensitive to micr
scopic details of the model. We have also identified the ba
parameters that do affect quantitative features of the profi
It is useful to summarize these results and to compare w
experimental data, as well as with predictions from previo
studies based on the reaction-diffusion equation appro
@4,6,23#.

1. Invader concentration at the output

In typical experiments, the invader concentration at
output is measured as a function of time. A slower propa
tion velocity shifts this output concentration curve to a la
time, as indicated in Fig. 12~a!. Typically, the time unit is
normalized by the time for passive particles to pass thro
the system@4,6#. Hence, the amount of the time shift is d
termined by the ratiov/v0 rather than byv itself.

A nice set of infiltration experiments, as well as an a
companying numerical study of the reaction-diffusion equ
tion, were performed in@6#. In these experiments, contam
nant solutions with different values of the invader partic
diameterd but with fixed mass concentration were used. T
makes the corresponding number densityr of invaders in
each solution proportional tod23. Also, since the cross
8-10
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INFILTRATION THROUGH POROUS MEDIA PHYSICAL REVIEW E63 021508
sectional area of each particle is proportional tod2, the av-
erage initial tube capacityM varies asd22. From Eq.~27!,
we then havev/v0;(11d)21. Thus the output concentra
tion curve shifts to a later time for a solution with a larg
value ofd, which is consistent with the experiment and n
merical predictions in@6#.

In another set of experiments, different electrolyte co
centrations of the carrier fluid were used. This mainly affe
the trapping rateg. For a larger trapping rate, the width o
the output concentration curve, namely, the time range o
which the output concentration changes from zero to its s
ration value, becomes narrower. However, there is no shi
the breakthrough time because the propagation velocit
independent ofg. These two features are illustrated in Fi
12~b!. This behavior again qualitatively agrees with the e
periment in@6#.

It would also be interesting to study the effect of differe
filter grain sizes. In our model this would be accomplish
by changing the characteristic parametera of the pore size
distribution. In turn, this affects the invader propagation v
locity, and the output concentration curve will shift in tim
accordingly. However, since the microscopic parameters
use in our modeling may be coupled with each other in
perimental situations, different sizes of filter grains or
vader particles may also affect, e.g., the reaction strengtg.
We can incorporate such a coupling effect by extending
model to deal with these effects explicitly. For example,
can adapt the microscopic models of particle trapping o
single sphere or on a plane@2,8# to the tube geometry. From
such an approach, we can express the reaction strengthg as
a function of the invader or defender diameter.

2. Tail of the output concentration curve

A slowly decaying tail in the deviation of the output co
centration from its asymptotic value is generally observed
experiments@4,6,23#. This observation is in contrast to th
empirical approaches, such as that given in@6#, which give
an exponential profile for the whole time range. Their p
diction agrees with experimental observations at early tim

FIG. 12. Qualitative dependence of the output concentra
curve ~a! on the propagation velocity, and~b! on the reaction
strength.
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but then deviates at later times, implying that the output p
file at later times is not exponential.

A closely related approach, based on the study o
reaction-diffusion equation, is presented in@4#, along with
experiments that measure the output concentration. Unlik
@6#, here the adsorption rate depends on the local concen
tion of contaminants and thus is spatially inhomogeneous
crossover from a rapid increase to a slowly decaying tai
the output concentration was numerically predicted. Ho
ever, the functional forms of these two regimes—in partic
lar, whether they are exponential or power law in time
were not investigated quantitatively. Nevertheless, the d
presented in this work seem consistent with a slower t
exponential decay of the density profile.

In @23#, an exponential output concentration profilec(x)
;exp(2Lx) is assumed from the outset, wherex is the
downstream distance andL is the experimentally measure
filter coefficient. The corresponding experimental data sh
that L is constant at early times, and then sharply decrea
at later times. Thus the initial stage of the experiment
consistent with an exponential profile, but later the profi
decays more slowly. In@23#, this is attributed to a ‘‘blocking
effect’’ in which previously deposited particles can block t
further deposition of particles onto nearby available trapp
sites.

3. Probability of encountering an open trap

As a last remark, let us examine the assumption that
probability of encountering an open trap is proportional
the fraction of open traps in a pore~Sec. III B!. Suppose
instead that one takes into account the volumetric effect
particles far from the surface of the pore do not have
chance to encounter a trap. Then the fraction of particle
contact with the inner surface of a tube is proportional to 1r ,
namely, the ratio between the surface area and the volum
the tube. This would lead to the interaction terms involvi
Tk in Eqs.~25! and~26! being multiplied by another factor o
1/r . However, this modification does not affect the propag
tion velocity of the front, nor the power-law feature of th
tail. Only the decay exponent changes through the step
Eqs.~33!–~36! with an additional factor of 1/r .

Our results can also provide practical guidelines for i
proving the design of a filter in two aspects, namely, t
breakthrough time and the amount of filter material us
before the breakthrough. A longer breakthrough time can
achieved by having a smaller filter grain size, a lower inp
concentration, or a larger pore capacity. While these tre
may seem intuitively clear, we can quantitatively estima
the increase in the breakthrough time through the expres
for the propagation velocity, Eq.~27!. When breakthrough
occurs, the amount of unused filter material is determined
the shape of the tail in the density profile of the defende
According to Eq.~37!, the amplitude of this tail is propor
tional to g2l. From this, we can quantitatively estimate th
amount of filter material left unused at the breakthrough ti
as a function of the reaction strength.
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APPENDIX: SOLUTION OF THE HYDRODYNAMIC
DISPERSION EQUATION

We solve the master equations Eq.~19! by the Laplace
transform method. Definep̃k(s)[*0

`dt pk(t)e
2st and take

the Laplace transform of Eq.~19! to find

sp̃05
rf

s
2

p̃0

t0
, sp̃k5

p̃k21

tk21
2

p̃k

tk
. ~A1!

Rearranging yields

p̃0

t0
~11t0s!5

rf

s
,

p̃k

tk
~11tks!5

p̃k21

tk21
. ~A2!

We multiply the above equations for indices 0,1,2, . . . ,k
together and rearrange terms yet again to obtain

p̃k

tk
)
m50

k

~11tms!5
rf

s
. ~A3!

Before taking averages, we usetk5(1/s)@121/(1
1tks)#(11tks) on the left hand side of Eq.~A3! to get

p̃k )
m50

k

~11tms!5
rf

s2 S 12
1

11tks
D ~11tks!. ~A4!

Averaging over the residence time distributionR(t) defined
by Eq. ~20!, we obtain

^ p̃k&5
rf

s2 ~12B!Bk, B[ K 1

11tsL , ~A5!

where^•& denotes an average overR(t). Note thatB does
not depend onm because all thetm’s are independent an
identically distributed in the largew limit. For the long time
limit, we need the smalls behavior ofB. Accordingly, we
expandB512s^t&1s2^t2&••• in terms of the moments
^t m&.
lli

02150
The profile of the carrier fluid~dashed line in Fig. 2! is
monotonically decreasing near the front, and thus can
characterized by its first derivative, which gives a bell shap
distribution centered at the front. We divide the derivative
the total sum of derivatives(m(^pm&2^pm21&)52^p0& to
obtain the normalized probability distribution of the front,

P~k!5
1

^p0&
@^pk21&2^pk&#. ~A6!

The average position of the front is, using Eq.~A5! and
the steady state solution of Eq.~19!, ^p0&5rf^t&,

^ k̄&5
1

^p0&
(

k
k@^pk21&2^pk&#

5
1

^p0&
L 21S (

k
k@^ p̃k21&2^ p̃k&# D

5
1

^t&
L 21S 12B

s2 (
k

k@Bk212Bk# D
.

t

^t&
, ~A7!

where the overbar means averaging overP(k), andL 21 is
the inverse Laplace transform. We use the iden
L 21(s2b)5tb21/G(b) for the last step. We assume a su
ficiently long chain of bubbles in the summations above
prevent a finite length effect. From above, we find the pro
gation velocity asv5^t&21 @Eq. ~23!#.

Similarly, ^ k̄ 2&5^p0&
21(kk

2@^pk21&2^pk&#, and the
width of the front is

@^k̄2&2^k̄&2#1/2.H t

^t&F2GS 11
m

2 DGS 32
m

2 D21G J 1/2

,

~A8!

which gives Eq.~24!.
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