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Infiltration through porous media
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We study the kinetics dffiltration in which contaminant particles, which are suspended in a flowing carrier
fluid, penetrate a porous medium. The progress of the “invader” particles is impeded by their trapping on
active “defender” sites which are on the surfaces of the medium. As the defenders are used up, the invader
penetrates further and ultimately breaks through. We study this process in the regime where the particles are
much smaller than the pores so that the permeability change due to trapping is negligible. We develop a family
of microscopic models of increasing realism to determine the propagation velocity of the invasion front, as well
as the shapes of the invader and defender profiles. The predictions of our model agree qualitatively with
experimental results on breakthrough times and the time dependence of the invader concentration at the output.
Our results also provide practical guidelines for improving the design of deep bed filters in which infiltration
is the primary separation mechanism.
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[. INTRODUCTION due to a finite surface area or a finite range of the surface
potential. When all the available surface area is covered by
In depth filtration, suspended particles in a fluid are re-particles, subsequent invaders flow passively through the fil-
moved during their passage through a porous mediLi@l.  ter without being trappedsee Fig. 1. Our basic goal is to
The basic dynamics of depth filtration is determined prima-understand the kinetics of this infiltration and the ultimate
rily by the pore structure of the filter, the particle size distri- preakthrough of the invader, as well as the evolution of the
bution, and various physicochemical and hydrodynamic demvader and defender density profiles as functions of down-
tails. If the particle size is larger than the typical pore sizestream position and time.
particles get stuck relatively quickly. The permeability of the  Previous work on infiltration in porous media has often
filter decreases steadily during this process and drops to zeKeen based on a macroscopic convection-diffusion equation
when clogging is reached. This process is often referred to agescription, with reaction terms introduced to account for
sieving or straining(3]. Conversely, if particles are much particle trappind4,6,7]. Another approach has been to use a
smaller than the pore size and if particles are trapped only aingle absorbing sphere to calculate the collection efficiency
the interfaces of the porous medium, the flow field is onlyat the initial stage of filtratioi8]. While numerical simula-
slightly affected by the trapping. The goal of this paper is totjons of these models have some predictive power, it is hard
provide a general understanding of this latter process-of to develop a connection between this macroscopic approach

filtration by microscopic network modeling. and basic features of the microscopic process, such as the
Infiltration underlies many practical situations, such asconcentration profiles of the trapped and flowing particles.
underground waste dispodd], gas mask design, or drink-  For filtration by straining, models based on a discrete net-

ing water filters[5]. Typically, submicrometer size contami- work description of the filter medium are relatively well de-
nant particles are suspended in a carrier fluid and flowieloped[9-13. To our knowledge, however, there has been
through a porous material, such as a sand filter whose typicglo microscopic network modeling work on infiltration. As in
grain size is much larger than the contaminant particles, ofhe case of straining, a spatial density gradient naturally
an ion exchange filtel5] where the contaminant size is mo- arises in infiltration, since particles begin to deposit at the
lecular in scale. In such cases, one can neglect the change @bstream end of the filter and advance downstream as the
the flow field due to particle trappin@], an approximation filter gets used up. The density gradient is experimentally
that considerably simplifies theoretical analysis. observed as the time-dependent output concentrféiprin

The kinetics of infiltration is controlled by the micro- this paper, we will account for this basic experimental obser-
scopic mechanisms for the trapping of the invader particlesyation by using a discrete network approach.
Typically each pore can hold a limited number of particles  practical questions raised by infiltration are the break-
through time, which is defined as the time for the output

Py ° o concentration to reach a specified threshold level, and the
PY ° filter efficiency, which is related to the fraction of the filter
 — material actually used before breakthrough. Clearly, it is de-
° ® ° L4 sirable to use as much of the filter material as possible before
O breakthrough occurs.

This paper is organized as follows. In Sec. Il, we intro-
FIG. 1. Idealized picture of infiltration. Suspended particles areduce the basic parameters that govern particle trapping and
trapped at “defender” sites on pore surfaces. Once defenders aferovide a qualitative picture of infiltration. In the following
occupied, subsequent particles pass by freely. sections, we construct a sequence of discrete models with
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Y the survival probability of the particles in this leading in-
\ vaded region decreases exponentially with downstream posi-
‘.‘_V_o’ tion as illustrated in Fig. 2. As particles advance and get
\ trapped, the pore capacity decreases and subsequent particles
\\\\\\,\\ xlnvader \Jracer are more likely to survive, giving rise to an advancing inva-
= sion front with a velocityv <v,. In principle, the propaga-
tion velocity and shape of the front are functions of time.
However, at long times these features approach steady-state
values. Another important feature is that the trailing edge of
the capacity profile decays as a power of the distance
|é] (€<0) from the invasion front whose location is de-
fined, e.g., as the position whete- c,,/2. For large|¢|, any

increasing complexity and realism to ultimately provide areasonablg definition fpr the front Iocat!on can b.e' used.
lattice network description. In Sec. Ill, we discuss the case of 1he existence of different propagation velocitieg for

a one-dimensionallD) chain of trapping sites and, in Sec. thel pure fluid an(_i;<v0 fo_r the contaminant Iee}ds to_punfl—
IV, we analyze infiltration in the bubble model to provide a C&tion of the liquid. The filter can be us_ed until the invaded
mean-field-like description. Building on these results, wef€9ion reaches the outlet end. For a filter of lengththe
then turn to simulations of infiltration on tube lattice net- Préakthrough time will be of the order afv, so the amount
works in Sec. V. We summarize and compare our result§ throughput will be approximately proportional tao/v.
with experiments in Sec. VI.

tail invaded

FIG. 2. Infiltration profiles. Horizontal direction is downstream.
The invader density profiléshaded is exponential in the invaded
region, while the capacity profile has a power law taik |£ .

Ill. ONE-DIMENSIONAL MODEL
Il. BASIC PICTURE o S
As a preliminary, we study infiltration in a one-

The two basic characteristics of particle trapping are thejimensional chain of identical pores ket 0,1,2 . .. . First
efficiency of an unoccupied trapping site and the number ofve consider the case where each pore can accommodate only
trapping sites in a pore. We introduce the trapping probabilone particle and then we generalize to multiple capacity
ity y as the probability that a particle is trapped upon enpores.
countering an open collector site. The parameténus rep-
resents the strength of the particle-collector interaction and . ,
accounts for the possibility that contact between particles A. Single capacity pores
and the filter grains may not necessarily lead to deposition We choose a time unit such that one particle is injected at
[14]. While this simplifies the complicated adsorption each discrete time step. Multiple particle injection leads to a
mechanism, later we show that basic features like the invadifferent particle density and will affect only the overall
sion front propagation velocit§Fig. 2) is independent of the scale factor but not change qualitative features of the system.
interaction details. The carrier fluid advances by one pore distance at each time

Next we introduce the capacity,(t) as the number of step; that is, its velocity is unity. When particle trapping
particles a pore at positiancan hold at time. In the case of occurs in a pore &, the capacityc,(t) changes permanently
noncoagulating particles, which cannot get trapped on top ofrom 1 to 0. At timet, a particle at por& gets trapped in that
an already adsorbed particle, the initial capacity is proporpore with probabilityy if c,(t)=1. A particle advances to
tional to the inner surface area of the pore and then decreasgig next pore in one time step with probability 1df(t)
as the pore surface is covered by particles. For simplicity, we=0. Based on these elemental steps, we introduce the fol-
ignore multiple trapping on an already occupied collectoriowing two probability densities(i) p(t), the probability
site as well as particle relaunching. The key factors that dethat a freely moving particle is in poteat timet; (i) qy(t),
termine the dynamic behavior of the system are geometrighe probability that the pore at siteis unoccupied, that is,

such as the capacity of a clean filter and the pore size distre,(t)=1. The corresponding master equationsggft) and
bution, and kinematic, such as the particle concentration ang, (t) are

the flow rate. More refined models for particle trapping can

be incorporated within our basic modeling. Pr(t+1)=pg-1(1— y0k-1), (1)
Consider a generic infiltration process based on the above

concepts. Initially a layer in the clean filter has a total capac- _

ity Cyor independent of the downstream position. tAt0, a Ak(t+1)=0a(1—yPw, 2

fluid that contains a mixture of invader and nonreacting

tracer particles enters the filter whose flow rate is determinewhere we drop the argumemton the right hand side for

by the steady-state solution of d’Arcy’s law. Tracer particlessimplicity. Unless there is a possibility for confusion, we will

passively follow the fluid motion and advance with the av-not write the argumerttin related formulas. Since a particle

erage flow velocity ¢. The width of the tracer density profile advances to the next pore in one time s@§t + 1) depends

spreads as'? due to hydrodynamic dispersidffig. 2. In-  onp,_4(t). The term (1 yq,_;) in Eq. (1) is the probabil-

vader particles first encounter clean collector sites. Becausey that the particle ak—1 does not get trapped by an unoc-

each such encounter leads to deposition with probabjlity cupied pore also at—1. Similarly, the term (% ypy) in
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pE) q€) the width ony and the profile shape predicted by E§) by
numerical integration of the master equatidhsand (2).

One subtle point is the rate of approach to the steady state.
First, we find that the asymptotic propagation veloaity
=uv,/2 is reached before the asymptotic profile is established.
This arises becauseis determined by the boundary condi-
tions, and not by interaction details. We also verified this
feature numerically. Adopting this asymptotic velocity, Egs.
(5) and(6) are then symmetric ip andg. In fact, the system

FIG. 3. Steady-state profile in the single capacity model. is identical to two-species annihilatio®+B—0, where

each species is ballistically injected from opposite sides with
Eq. (2) is the probability that poré does not trap a free velocity +v/2 for theA’s and — v /2 for the B’s.
particle at timet. The initial and boundary conditions for Thus most of the time variation in Fig. 3 occurs in the
these equations are reactive region of widttw, wherew=0 att=0. Integrating

Pen(0=0, G(O)=1; po()=1, gu=1. (3 0O frOM—&<010&>0 gives

If the trapping probabilityy is small, a particle can ad-
vance many pores without being trapped, so hdt) and
gx(t) vary slowly in space and time and a continuum ap-
proximation can be applied. Letting+ 1—x+ éx andt+1
—t+ 6t, Egs.(1) and(2) become, to lowest order,

Uo

& &
- 2+6tJ pd§=—7f pq dé. ©
—& -1

The integral on the left hand side is the area under the curve
p(&é) between— &, and &,, whose time dependence mainly
comes from the change iw. On the right hand side, the

P+vodyP=—ypPa, integral is approximately proportional t@, sincepq is sig-
(4) nificantly different from zero only in the reactive region. We
4q=—ypq, can then rewrite Eq9) as
wherev,=6x/6t=1, and y— y/ét is a redefinition of the Vo .
trapping probability in units of the infinitesimal time incre- ?Jrcl‘?tw_ yeW, (10

ment.
In a comoving reference framg=x—vt, with v the in-  wherec,; andc, are constants. Integrating E{.0) and ap-
vasion front propagation velocity shown in Fig.(&hich is  plying the conditionw(«)~uv /2y gives an exponential de-

yet to be determingd Egs.(4) become cay to the steady state(t) ~ (vo/2y)(1—e™%2").
It is worth emphasizing that the symmetry between the
(Lo—v)dep+dp=—Ypq, () invader and defender is generally responsible for the relation
v=uv,/2. At the inlet, invaders are injected with velocity,
—vdq+dq=—7vpq. (6)  and the invasion front advances with velocity with one

invader particle annihilating with one defender site. In the
reference frame moving with velocity,, the situation is
reversed. The invaders are at rest and defenders are injected
with velocity vy from the opposite direction. Therefore the

_ " — const. 7 invasion front advances with velocity, —v. Since these two
(Lo~ v)P(&)+va(é) @ reference frames describe the system in the same way, the

The integration constant can be determined by applying Eqdront velocities should be the same; thatuszvo—v, orv
(3) in the comoving frame. Ag— —«, p—1, q—0, and =vo/2.
as {¢—ow, p—0, g—1. These immediately give =uv4/2
=0.5. Note that is determined entirely from the boundary B. Multiple capacity pores
condition(andvg) in the comoving frame, and not from the
interaction strengthy. This feature continues to hold for all
the models in this paper.

Using Eq. (7) with v=v,/2, Egs.(5) and (6) can be
solved to give

Let us first examine the steady-state solution of Ef5.
and(6). Setting the time derivatives to zero, subtracting Eq
(6) from Eq. (5), and integrating with respect ®gives

Now we consider the case where each pore can Map
particles, that is, the initial pore capacity ég(0)=M. We
again follow the previous rules of injecting a single particle
and advancing a particle by one porg,€1) at each time
step. Multiple particle injection or different injection inter-

1 1 vals again simply change the overall concentration and time
P(E)= . AH)=——5 @ seae . N
1+etlto 1+e ¥ In a multiple capacity pore, the probability of encounter-
ing an open trap in a pore needs to be considered, in addition
(Fig. 3. Thuséy=v/2y is the characteristic widthv of the  to the trapping probabilityy upon encounter with an open
profile. Notice also that the profiles pfandqg are symmetric  trap. Generally, the encounter probability decreases as more
about their intersection. We verified both the dependence gfarticles get trapped, since the inner pore surface area avail-
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able for trapping shrinks. When fluid mixing within a pore is rate equations to Eq$5) and (6) with y— y/M andq—Q.
weak, a particle can encounter only one trap, either open ofhe boundary conditions are also the same as in the case of
occupied. Then the encounter probability is approximatelysingle capacity pores, exce@@(é—~)=M. Combining
proportional to the fraction of the open surface area. On théhese results gives

other hand, if the mixing is perfect, a particle encounters all

the available traps in a pore before exiting. 0 voM

For practically relevant situations, pores are sufficiently UTTEM W(e)~ m (16
short so that a particle in a pore follows streamlines without
transverse diffusive mixing15]. In what follows, we con-  Notice that forM =1 Eq.(16) reduces to the single capacity
sider this limit of weak mixing. For a pore with out of M case, while forM —o, v—0. This means that there is no
traps available, the encounter probabilityrisM, and the  steady state for the case of infinite capacity pores.
overall trapping probability of this pore i$,=yn/M. In We can generalize the symmetry argument given in the
writing this expression, we ignore the possibility that a par-single capacity case to find the propagation velocity in Eq.
ticle far from the pore wall does not encounter any traps. In16). At the input, the flux of invaders moving with the car-
Sec. VI, we argue that this volumetric effect does not changgier fluid is equal to X v,. Similarly, in the reference frame
the basic behavior of infiltration. moving with velocityv,, the flux of defenders i Xuv,

To describe the evolution of the system, we use the sam@hile the invaders are at rest. Because one invader annihi-
single particle probability densitp,(t) as in the single ca- |ates with one defender, the two particles are kinetically in-
pacity pore system, but modify the probability density for thedistinguishable. Therefore, if a particle flux ok, results
capacity as followsg(t) is the probability that a pore at in a front moving with velocityv, the front velocity pro-
position k containsn open traps. This is the same as theduced by a flux ofMl X v, should beMuv, which, in turn,
probability thatc,(t)=n, for O<n<M. Following similar  equalsv,— v in the moving reference frame. By this equiva-
reasoning as that applied to deduce E@s.and (2), the |ence, Eq.(16) immediately follows.
master equations fqu,(t) andqgy(t) are In the limit of perfect mixing, a particle encounters all
traps in the pore. The overall trapping probability with

M
B 0 n _ open traps is the@,=1—(1—%)". In the limit of small
Pt 1) =Pi-1 qk*1+nZl Ok-1(1=Tn) |, 1D v, T,=vn; thus the analysis is exactly the same as in the
poor mixing case except without the factoMLin T,,. The
ap(t+1)=ql(1—peT) +Pedh s (12)  bropagation velocity of the front is the same as in Bdf),

since this velocity is independent of trapping mechanism,
In Eq. (1), qf_,(t) accounts for the case that the pdre While the width varies ag/~vo/y(1+M). Notice thatw is
—1 has zero capacity. Other terms in Etyl) correspond to @ decreasing function d1. This arises because a particle
cases when the capacity is different from 0, with{T,,) the ~ Must survive all the traps in a pore before advancing to the
survival probability for each case. In E(L2) qf(1—peTn) next pore. Finally, for a mixing mechanism that is interme-
is the probability that the pore with capacitydoes not trap diate betyveen the.tvvo .I|m|ts of perfect anq poor mixing, the
a particle, an¢kQE+lTn+1 is the probability that the capac- propagatlon_ ve_IOC|ty will be)0/(1_+ M) while the width of
ity decreases fronn+1 to n by a particle trapping event. the front will lie between the limiting values afy/y(1
Hence the last term is absent wher M. +M) andvoM/y(1+M).

We simplify Egs.(11) and (12) by introducing theaver-

age capacityof a pore at positiork, IV. THE BUBBLE MODEL
M We now study the bubble model as a logical next step
Qu(t)= E nagp(t). (13 toward understanding infiltration in porous media. The
n=1 bubble model was introduced to account for the breaking of

o . ) ] fibers[16], extremal voltages in resistor networks7], and
This gives the average number of sites still available fonater filtration kinetics11]. The bubble model consists bf
trapping in the pore. Now by multiplying Eq12) by n,  “pypples” in series, each of which is a parallel bundlevof
summing from 1 taM, and using=L;aR(t)=1—ag(t), we  tubes, with each tube representing a p@ig. 4). A bubble
obtain can be viewed as a single layer of parallel bonds in a lattice

with all the ends “shorted.” This model has multiple paths,
Pk(t+1)=pk1(1—%Qk1), (14) as in real porous media, and is sufficiently simple to be

1—%pk). (15 @@@ - @lw

These are identical in form to Egél) and (2), so the same
steady-state analysis applies. We transform to a comoving FIG. 4. The bubble model consists bfbubbles connected in
frame and take the continuum approximation to reduce theeries, each bubble with tubes.

Q(t+1)=0Q
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amenable to analytic study. A useful feature of the bubblell k. Since the flow rate does not change in infiltration,
model is that for straining dominated filtration this model constant pressure drop and constant flow rate conditions are

predicts similar behavior to that of lattice netwoflsl]. equivalent.
We choose the tube radii in the bubble model from the The particle transport properties can be obtained in terms
Hertz distribution of the residence time distributid®(7), namely, the probabil-
. ity that a particle spends a timein a bubble. This residence
f(ry=2are ", (17)  time distribution is related to microscopic distributions by

where a2 is the characteristic pore radius. This form is o 1

often seen in experimental pore size measurendsand R(7)= fo dr (I)(r)f(r)ﬁ( T v_r)) (20)
has been used for modeling the pore size distribution in fil-

ters[3,11]. For simplicity we assume identical tube lengths \here 5(x) is the Dirac delta function. Since the flow rate
and measure downstream distance in units of the tube lengtfyio 3 tube of radius is $®(r), the average flow velocity

which is set equal to 1. We also assume that the flow rate iB(r)= $®(r)/7r2. Using this together with Eq(17) for
a tube of radiug is proportional to—r*VP, whereVP is f(r), we obtain the first two moments of

the pressure gradient along the tube andlepends on the
nature of the flow, withu=4 corresponding to Poiseuille

flow and =2 to Euler flow. Perfect mixing is assumed at <T>=f T R(7")d7r" = S X (21)
each node. A particle chooses a tube in the next downstream 0 pa ¢
bubble according to th#ow induced probabilityd (r),
i () =(7)yT 1+§)F(3—E>, (22
d(r)=—"——, (18)
f dr’ f(r')r'# whereV=(xr?) is the average tube voluntescall that the

tube length is fixed to be)landI'(x) is the gamma function.

in which the probability of choosing an outgoing tube of We solve Eq(19) in the Appendix by the Laplace trans-

radiusr is proportional to the flow rate into the tube forlm ftechn:?ur?. Fr_(()jn;] thflshsolfunon, the average propagation
[11,13. velocity and the width of the front are

Since tubes of different flow velocities give the dominant 1
mechanism for dispersion, the radial dependence of the local Vo=,
flow velocity in a tube(Taylor dispersiohnis ignored. Thus (7)
we assume that a particle moves with the average flow ve-
locity v(r) along the tube. We now investigate the hydrody- t 2 M 1/2_ U2
namic dispersion of passive Brownian particles which are (7) 2r 1+E r 3_5 -1 =D
carried by the background fluid in the bubble model, in the (24
absence of any trapping. This will provide the concepts and
tools necessary to understand infiltration in the bubbleThus we see that the dispersion coefficient is proportional to
model. the average flow velocityr) 1. When u=2 (Euler flow),
the flow velocities in all the tubes are identical and there
A. Hydrodynamic dispersion in the bubble model should be no dispersion. However, Eg4) gives a nonzero
L ) ) ) dispersion coefficient. As mentioned above, this arises from
In the largew limit, each bubble is nearly identical, and ¢ gtochasticity of the random walk picture for the particle
we can regard the particle motion as a directed random wal otion. For the practically relevant case @4, the effect

in_which the average residence timg in bubble k(k ¢ thig stochasticity is only to change the dispersion coeffi-
=0,1,2...) is arandom variable whose distributi®(7) is  jent by a factor of order unity.

related to the flow induced entrance probabidityr) and the
radius distributiorf(r). This random walk description of the
continuous particle motion introduces an additional stochas-
ticity into the system. However, we will show below that this  To describe infiltration in the bubble model, we need to
only modifies the hydrodynamic dispersion coefficient by anspecify the particle motion, the tube capacities, and particle

(23

wW=1{-—

B. Infiltration in the bubble model

overall multiplicative factor. trapping in a tube. For the particle motion we again assume
The master equations fqn(t), the probability that there that a particle chooses a tube according to flow induced
is a particle in thekth bubble at time, are probability and then advances with the average flow velocity
v(r) of this tube. The capacity of a tube is proportional to its

dpo . Po APk Pi-1 Pk (19  inner surface area, which is proportional to the tube radius,

dat P o' dt  meq T since all tubes have the same length. Last, the overall trap-

ping probability of a tube is equal to the microscopic trap-
Herep is the initial particle number concentratios,is the  ping probabilityy multiplied by the fraction of open traps in
(constank flow rate, and the initial condition ig, (0)=0 for  a tube(Sec. Ill B).
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probability of this tube is thereforf = ycf(t)/cf(0). After
trapping has occurred, the tube capacity is decremented ac-
cording to the following prescription. When one unit of PDF
(equivalent to one particjegets trapped, we define the bond
capacity to be decreased By ThereforeA is just the sur-
face area covered by one patrticle. Correspondirt;leO)/A
equals the number of particles the tube can accommodate.
FIG. 5. Propagation of the PDF in tulgzat bubblek. (1) Initial Our algorithm for propagating an element of probability
probability elementpf(t). (2) Fraction remaining.(3) Fraction  at the entrance to bond in the kth bubble over a timest
trapped.(4) Fraction advancing. This last element enters the nextherefore consists of the following steffsig. 5):
bubble and is then immediately split among the tubes according to (1) The fraction of PDF remaining at the start:

the flow induced probabilities. pE(1-uf).
(2) The fraction trapped in tubg:
To simulate this process efficiently we propagate the pPUETE .
probability distribution functiolPDF) of the suspended par- (3) The fraction advancing to the next junction:
ticles rather than simulating the motion of individual par- pPul(1-TE).

ticles [19,20. The PDF propagation therefore provides the
exact distribution of particle positions and tube capacities for p
a single realization of tube radii. Conceptually, the PDF al- —Ax[pfuka].
gorithm is equivalent to an exact integration of the master The rate equations that account for these steps are
equations. w

To implement the PDF propagation, we def'p]ﬁt), the p,B(t+ &):pﬁ(l_uﬁ)+(pﬁ 2 pﬁ' ub’ (1_1—3' )
probability that there is a particle at teatranceof tube 8 in K k TR T k=1h
bubblek (8=1,2,...w, k=0,1,2...); cf(t), the capac- (25
ity of tube B in bubble k. Since particles generally have
different velocities, their positions could be anywhere within c(t+ot) =cf— ApLuTE. (26)
a tube. We simplify this by forcing particles &waysbe at  The first term on the right hand side of E@5) is the frac-
the tube entrance by adjusting the time unit and the PDFkjon of probability that does not move, and the second term is
propagation so that thaverageparticle position is at the e contribution from elements of probability that has moved
correct location along the tube, as illustrated in Fig. 5. from the previous site. The flow induced probabilihﬁ in

To construct the particle motion, let us temporarily disre-Eq. (25) accounts for the fraction of PDF that enters into
gard particle trapping. We set the time increment todbe tube B

=1/ max, Wherev y,y is the maximum flow velocity among

all tubes. In a timedt, a partic_le at the entrance Qf the fastest jyqve rate equations and simulate the PDF propagation. By
tube should traverse the entire tube length, which is equal t,is method, we find a traveling front whose basic properties
1. We then let a particle in a slower tube, with velodit§f  coincide with the hydrodynamic dispersion results given by
<Umax. travel a distance 1 with probability{=v{/vmax, OF  Egs.(23) and (24).
remain fixed with probability +-uf . One can regard as a It is also worth mentioning that our PDF algorithm can be
normalized flow velocity. By construction, such a particle generalized to allow for hopping a distance that is a fraction
travels the correct average distance in tirdg 1Xuf  of the tube length. In this manner one can account for differ-
+0X (1—uf)=vllvma=vEot. ent longitudinal flow velocities at different radial positions
Let us now recast this random walk into a probability within a tube(Taylor dispersior{7]). In the limit of an in-
propagation algorithm. Consider an element of the PDF thafinitesimal hopping distance, continuous particle motion is
is at the junction before thkth bubble. Before any particle reproduced by the PDF algorithm. Unfortunately, the gain in
motion occurs, we split this probability element among thehaving a more accurate description of the motion is offset by
downstream bonds in this bubble according to the flow inthe complexity of the algorithm and the large increase in the
duced probability at the tube entrance. We can view theomputation time.
probability element as advancing infinitesimally into each
bond, as indicated on the left side of Fig. 5. Once this initial C. Asymptotic behavior
tube assignment is made, the probability element remains To obtain the average invasion front profile over the tubes
within its assigned tube until it reaches the next junction. in each bubble, we define the bubble-average quantities
. Now consider th.e motion of a probab'mty element thaﬂt haSPk(t)E(ll\N)EBpf(t) and Qk(t)E(ll\N)EBCE(t). We first
just entered a particular bond. After a timg, a fractionui  derive the invasion front velocity via the symmetry argument
of the PDF is advanced to the next bubble, while a fractiorof Sec. 11l B. A rigorous derivation of the front velocity from
1-uf remains fixed at the entrance to boAd the master equations fét,(t) and Q,(t) is given in[21].
Due to the filtration, a fraction of the flowing PDF be-  The carrier fluid is moving with velocity, [Eq. (23)] and
comes trapped in tubg in the kth bubble at a rate that is the input flux of invaders per tube is equaltgpV, sincepV
proportional to the tube capaciqf(t). The overall trapping is equal to the number of invader particles per tube volume

(4) The capacity change of the tube by trapping:

To test this approach, we set=0 (no trapping in the
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in the input fluid. On the other hand, in a reference frame

moving with velocityv o, the input flux of defenders is equal 0P = —f dr f(rv(r)[axpx.tr)+yp(x,t;r)]. (30)
to vgM where M=(r)/A is the average initial number of

invaders a tube can accommodate. Following the argumeni the steady-state comoving frame, E80) becomes

in Sec. lll B, we find that the front velocitias andvy—uv in

the two reference frames are related =pV(vg—v),

yielding o =pV(vo=v) vﬁgP:fdrf(r)v(r)[ﬁgp(é;r)Jryp(é;r)]- (31)
L M -t @7 Since only a small number of particles have entered the
vo pV invaded region, the density of moving particles is approxi-

mately proportional tor#, and we introduce the ansatz

Good filter performance means that the breakthrough tim@(&;r) =r#g(¢) to factorize the PDF. In order to calculate
is long or, equivalently, that the propagation velocity is slow.the dominant contribution from the integral in EQ1), we
Equation(27) implies that the propagation velocity can be substitutev (r)=vq+ dv(r), where dv(r) is the deviation
made small by increasing the capacity of a pore, or by defrom the average carrier fluid velocity,. Since dv(r) has
creasing either the filter grain size or the input particle conzero mean, the dominant contribution to the integral over
centration. Notice that neither the reaction strengttior the v (r) in Eq. (31) comes from the constant past. Using
nature of the flow[throughv (r)~r#~2] affects this propa- these approximations in Eq(31), and using P(¢)
gation velocity. =(r*)g(¢), we find

We now study the asymptotic density profiles. Instead of
working directly with the averaged quantitig®,(t) and vg'=vo(g"+v9). (32
Qy(t), we first focus on the behavior of a single tube of i
radiusr, since tubes with the same radius in a bubble haveNcev <vo, we find g(£) ~exd —vo¥é/(vo—v)]. Hence the
identical time dependence. The asymptotic profiles can b@rofile of free particles in the invaded regidt(¢) decays
obtained after averaging over the distribution of tube radii.exponentially ing, with a characteristic decay length that has
Therefore, we label tubes according to their radii instead ofhe same 1y dependence as in the 1D model. o
the indexB3. We denote byp,(t;r) andc,(t;r) the PDF and Let_ us now turn to the analysis of the capacity profile in
capacity of a tube of radiusin the kth bubble. the tail region. In terms op(x,t;r) andc(x,t;r), Eq. (26)

Let us first focus on the PDF profile in the invaded region.Pecomes
Here, traps are mostly unoccupied, so that the tube capacity
ck(t;r) is approximately equal to its initial value/(O;r), ac(x,t:r)=—Ayp(x,t;r)v(r)
which is proportional to the tube radius, and we set it equal
to r. The arbitrariness in the unit of capacity can be con-_. ] o o ) )
trolled by the magnitude of the parameter Then Eq.(25) Since there is negligible trapping in the tail region, the par-

c(x,t;r)

(33

becomes ticle motion follows that of the carrier fluid. Thus(&;r)
=7r2p, wherenr? is the tube volume, and the flow velocity
Pe(t+ 8t 1) =p(t;r)[1—u(r)] is v(r)=¢®(r)/mr?=¢r*=2/m(r*). Substituting these in
Eq. (33) and transforming into the comoving frame gives
+(1_7)‘p(f)fdr'f(r’)pk—l(tf')u(r’), dec(Er)=sr* (&), (34)

(28 wheres=Aypd/v(r*)y denotes the strength of the particle

) , , , trapping reaction. We now integrate E®4) from — ¢&,<<0
where the integration over’ replaces the summation over to £,~0 and use the boundary conditiaé,;r)=r to ob-
the tube index. The flow induced probabildy(r) and nor- t in2 2

al
malized velocityu(r) are independent of the downstream
positionk because these depend only on the radius of a tube. c(g'r)zre‘srwl‘f‘ (35)
The equation forP(x,t) can be obtained by multiplying ' '

Eq. (28) by f(r) and integrating over. As in Sec. lll, we  \yhere we drop the subscript &f.

take y<1 and consider the continuum limit. If we redefine  Finally, the average bond capacity as a function of posi-
the length of the bubble from 1 tx, ot becomesSx/vmax-  tion with respect to the fronQ(&), is

Integrating Eq.(28) and expanding irSt and 6x yields

Q(§)=J drf(r)c(é;r):ZaJ drr2esr é-ar?,
St o P(x,t)=— j dr f(ryu(r)[ ox dyp(x,t;r)+ yp(x,t;r)]. (36)
(29)
For large| &, the integral is dominated by the smallest tubes
Here, we usefdr f(r)®(r)=1. Dividing Eq. (29 by 6t and the initial distribution of tube radii is irrelevant in the tail
changesu(r) back tou(r). After redefining y—y/dx as  region. Hence the factaxr? in the exponential can be ig-
before, we obtain nored. Performing the resulting integration gives
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Q&) lo=g)=teh ™ @

where the last relation serves to define prefile exponent
\. This is one of our primary results. Correspondingly, the
PDF in the tail region will approach its initial value with the
same power law.

The existence of the power law tail in the capacity profile
stems from the fact that the flow rate is not affected by trap-
ping. Thus when large pores are “used up,” the fluid still 0 : e :
predominantly flows through these pores, leading to a sub- 0 200 400 600 800 1000
stantial unused capacity in the smaller tubes. It is these un- K
used smaller tubes that contribute substantially to the capac- FIG. 6. Normalized profiles for a single realization. Parameters
ity profile in the tail region. This mechanism is quite generalused arex=4, a=1, y=0.1, andA=0.4. Gray lines are raw
and depends only weakly on the form of the radius distribu-data, black lines are smoothed.
tion. For example, for a uniform distribution in the range
=(0,1), we obtail\ =2/(x—1). However, if there is a finite
lower cutoff in the radius distribution, the PDF will have an
asymptotic exponential tail.

It is interesting to note that the density profile has differ-
ent dependence o in the invaded and tail regions. From _
Eq. (37), the density profile contains an overall factgr . 2. Front velocity
Thusy typically does not appear as an overall scale factor of Figure Ta) shows the front position, defined as the point
the entire profile, as in the invaded region. However, for thewhereP,(t) is half of its saturation value, versus time. No-
practically relevant case @f=4, the exponent in Eq37)is tice that a constant front propagation velocity sets in almost
equal to 1, andy becomes the overall scale factor of the immediately. Withp=1/7 and ¢= =, Eq. (27) gives
profile.

the raw data in Fig. 8 are larger than those from the
smoothed data, and differ from the predicted value of the
profile exponent.

v 1

D. Numerical results —_— =
) ] ) . ] Vo 1+ mal2A
In our numerical simulations, we set the input particle flux

per tubep ¢ equal to 1, which means thatunits of PDF are

injected into the system at every time step. This can b&he slopes in Fig. (&) agree well with Eq(38). Notice that

achieved by choosing= 1/ and ¢ =, which also makes the propagation velocity does not depend on the reaction

vo=a [Egs.(21) and(23)]. strengthy nor the exponeni in the radius dependence of
We applied the PDF propagation of E¢85) and(26) to  the velocity.

a system of sizevX L=200x 1024. Due to the exact nature

of the PDF algorithm, a single realization provides good

(38

quality data forw=200 tubes. A system length &f=1024 1000 (a) (b)
is sufficiently long to give the continuum functional form of 800 + L ;
the profiles. All the data shown below are results of single §
realization of tubes including the network simulation in the % 600
next section. The simulation is stopped before the front exits &
the system. ‘S 400 | v 42005 ] 7 x y=0.05
e 4 o =2 8 o u=2
1. Density profiles 200 @ v A=02 11 v A=02, {i=3 1
, : . . , * 0=0.25 * =025
Figure 6 shows typical particle and tube capacity profiles. ‘ . , ; « \
There are strong bubble-to-bubble fluctuations and some 0 2000 4000 6000 2000 4000 6000 8000
type of smoothing procedure is necessary. We use the time time

Savitzky-Golay smoothing technique, which approximates g 7. Front position vs time for different microscopic param-
successive windows of data points to a fourth order polynOgers for(a) the bubble model andb) the square lattice. Filled
mial (solid lines in the figure[22]. This technique is supe- circles are for the same parameters as those in Fig. 6. Other data
rior to local averaging because Savitzky-Golay smoothingnodify these parameters as indicated in the legend. The straight
can faithfully follow rapid changes in the profile, as can bejines are linear fits to the data with slopes(af 0.33, 0.32, 0.31,
seen in Fig. 6. This smoothing is also useful in estimating the.19, 0.12, andb) 0.32, 0.32, 0.31, 0.19, 0.12, from top to bottom.
exponents. Since the logarithm of the profile in the tail re-The corresponding velocities predicted by Ef) are 0.311, 0.311,
gion amplifies the fluctuation in nonlinear way, the slopes 0f0.311, 0.184, and 0.119.
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IN(Q(E)
Q®)" e

5 4 6 8 0 0.005 0.005 0.01
In(E]) In(g]) 1/1g] 171

FIG. 8. Tube capacity profile in the tail region on a double  FIG. 10. Dependence of the capacity profile in the tail region on

logarithmic scale fop=4, 3, and 2(top to bottom. Other param- - Only smoothed data are shown. Solid curvgs=4, dashed
eters are the same as in Fig.(). Bubble model: The slopes of the curves:u=3. Thick curves:y=0.05, thin curves:yy=0.1. Other
data in straight region are 0.97), 1.49 (1.5, and 3.17(3). The parameters are the same as in Fig(a.Bubble model: The value
numbers in parentheses are the predictionu3/Q). (b) Square A=3/(x—1) is used.(b) Square lattice: From Fig.(B), A=0.95

lattice: Solid lines are smoothed data. The thick straight lines ardor ©=4 and 1.07 foru=3 are used. Notice that the abscissa
linear fits, with slopes 0.95, 1.07, and 1.28. values are proportional to 4/from Eq.(37). Arrows are guides to

the eye.
3. Tail profile
Figure 8a) shows the tube capacity profi@(¢) in the 4. Invader profile
tail region as a function of the distantd (£<0) from the Figure 11a) is a log-normal plot of the invader profile

fron.t on a double logarithmic ;calg. Thg plot becomesp(g) (raw data versusé. The slopes of the two data sets are
straight for largd £| and the slope_ln this region corresponds; " oy cellent agreement with the predicted valugy/ (v,

to the exponenk =3/(x—1) predicted by Eq(37). Forthe  _y from Eq. (32). In the invaded region, since there are
uniform distribution on (0,1), we predicted the profile expo-te\ particles present, the corresponding PDF monotonically
nent to bex =2/(u—1). For u=4, the exponent value of gecreases and its fluctuation is significantly smaller than in
2/3 agrees well with our simulatioriEig. 9). However, fora e t4il region.

radius distribution with a lower size cutoff, we expect an

exponential density profilénset to Fig. 9.

As_ we al§o (_Jl|scusse(_j in Sec. IV_C, the amplitude of the V. SQUARE LATTICE NETWORK
density profile in the tail region typically has a power-law
dependence on. For a Hertz distribution of particle radii, We now consider infiltration on a square lattice network

this amplitude should be proportional to » according to  of tubes. Here, local mixing at tube junctions occurs as op-
Eq. (37). Thus Fig. 10a) showsQ(¢)*|&| versus 1| for  posed to the mean-field-like mixing in the bubble model.
n=4 and u=3. Values of the abscissa should be propor-Nevertheless, many of our predictions from the bubble
tional to 1fy, which is indeed the case. model continue to be valid for the lattice network. For ex-

ample, we expect that the propagation velocity given by Eq.

0 T T T
2! ] (b)
~ ©,1)
@ » : )
g R .
%.(03,1.3) < 20t - 3,01
-8 I 1 e u=dy y=0.1
L —-oo p=3,v=005 Tk
200 4100 600 800 s | et 1003
8 g - 0 100 100 200
0 2 4 6 8 3 E

In(l
(& FIG. 11. Log-normal plot of the invaded region. The same data
FIG. 9. Tube capacity profile on a double logarithmic scale for asets as in Fig. 10 are used. The slopes of the straight regions are,
uniform radius distribution ong,b). Parameters other than the ra- from left to right, (a) bubble model: 0.152, 0.150, 0.0744, 0.0748,
dius distribution are the same as in Fig. 6. The slope of the straighand (b) square lattice: 0.152, 0.155, 0.0756, 0.0773. The corre-
region for @,b)=(0,1) is 0.63(predicted value 2/3 Inset: log- sponding values of the slope fromyy/(vo—v) are 0.145 and
normal plot when &,b)=(0.3,1.3). 0.0726.
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(27) will continue to hold in the lattice network because it is Ill B where pV invaders are injected with velocity, into
determinedonly by the boundary conditions of the particle the chain of defenders of capaciy.

flux and initial filter capacity. We also find numerically that

the network model has both the same exponential invader VI. SUMMARY AND DISCUSSION

profile and the same power-law capacity profile as in the . S )

bubble model, although the values of the amplitudes and !N this paper, we studied infiltration, in which suspended
decay exponents are different. Overall, it appears that thparticles are removed from a carrier fluid as t_he suspension
bubble model provides an excellent account of the numericd?asses through a porous medium. The trapping mechanism

results from the lattice network. has a built-in saturation so that once all available trapping
sites are used up subsequent particles can pass through the
A. The model medium freely. The particles are assumed to be sufficiently

small that their trapping does not change the flow rate. The

We study a square lattice of sizexL=200x1024  hasic dynamical properties of this infiltration process are the
which is tilted at 45°. A periodic boundary condition is im- density profile of the invader particles and the capacity pro-
posed in the transverse direction. The tube radii are drawfjle of the remaining active pores. When the invader profile
from the Hertz distribution of Eq(17). Notice that the reaches the end of the system, the output concentration of
bubble model would arise from this system by merging to-particles quickly increases to a saturation level and the filter
gether all sites at the same longitudinal position. The overalkhould be discarded. Thus the features of this profile are
flow rate ¢ is set tow and the particle density tp=1/m,  important in understanding the operating characteristics of
just as in the bubble model. infiltration.

For a given set of tube radii, the flow field is calculated by  we have developed a series of discrete network models to
using the conjugate gradient methi@P] to solve the set of describe the basic characteristics of infiltration, starting with
linear algebraic equations for fluid conservation at eachy one-dimensional model and building up to the bubble
node. The tolerance of the computation is set so that thenodel, which is a series array of parallel, multiple capacity
measured average PDF and the tube capacity iktthéayer  tubes. The advantage of these quasi-one-dimensional models
are accurate to within 0.01%. After the flow field is solved, is that they remain relatively simple, even after incorporating
we use the same PDF algorithm as in the bubble model t@cal spatial heterogeneity. The bubble model, in particular,
track the motion of the suspended particles. The new featuregppears to capture many of the quantitative features that we
due to the lattice nature of the network are that tubes are onlgbserved in numerical simulations of infiltration on a square

locally connected and that the local flow direction is notlattice tube network. Our modeling is also flexible, so that

always downstream. variations can be easily implemented for case-specific situa-
tions.
B. Numerical results Our main qualitative result is that basic dynamical fea-

tures of the system, including the value of the front propa-
tion velocity, the exponential profile of flowing particles in
rhe invaded region, and the power-law capacity profile of
Rores in the tail region, are relatively insensitive to micro-
es_copic details of the model. We have also identified the basic
parameters that do affect quantitative features of the profiles.
It is useful to summarize these results and to compare with
experimental data, as well as with predictions from previous

weaker than in the bubble model. Asdecreases from 4 to sztlugizes based on the reaction-diffusion equation approach
2, \ increases slowly from 0.95 to 1.28. [4.6.23

To isolate the dependence of the capacity profile on the
trapping probabilityy, Fig. 10b) showsQ(&)'|¢| versus
1//¢| in the tail region. Here, the values af used are ob- In typical experiments, the invader concentration at the
tained from Fig. 8v). Unlike in the bubble model, the overall output is measured as a function of time. A slower propaga-
amplitude has a relatively stronger dependencewoilow-  tion velocity shifts this output concentration curve to a later
ever, the dependence omylétill holds even in the network time, as indicated in Fig. 18). Typically, the time unit is
case. It seems that in the square lattice networtkas more  normalized by the time for passive particles to pass through
effect on the amplitude of the tail than on the decay expothe systen{4,6]. Hence, the amount of the time shift is de-
nent. termined by the rati@/v rather than by itself.

Lastly, Fig. 11b) shows the density profile of invadersin A nice set of infiltration experiments, as well as an ac-
the invaded region. The slopes of these particles are almosbmpanying numerical study of the reaction-diffusion equa-
identical to those of the bubble model. Currently we do nottion, were performed ifi6]. In these experiments, contami-
have a clear explanation of this fact. It seems that the netant solutions with different values of the invader particle
work geometry does not affect the profile. In fact, the char-diameterd but with fixed mass concentration were used. This
acteristic decay lengthp—uv)/vyy, of the profiles in Fig. makes the corresponding number dengityf invaders in
11 is the same as that of the corresponding 1D model in Seeach solution proportional td 3. Also, since the cross-

To facilitate comparisons, all our numerical results for the
bubble model and the square lattice are presented side
side. Figure 7 shows the front position versus time for bot
the bubble model and the square lattice. The square latti
results are in excellent agreement with the bubble model pr
diction for the front velocity, Eq(38). Similarly, the tube
capacity profile exhibits a power-law tdiFig. 8b)]. How-
ever, the dependence of the decay expoheah x is much

1. Invader concentration at the output
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@ = = but then deviates at later times, implying that the output pro-
/ file at later times is not exponential.
larger v/vo,” / smaller vivo A closely related approach, based on the study of a
— // reaction-diffusion equation, is presented[#l, along with
/ experiments that measure the output concentration. Unlike in
/ [6], here the adsorption rate depends on the local concentra-
tion of contaminants and thus is spatially inhomogeneous. A
crossover from a rapid increase to a slowly decaying tail of
the output concentration was numerically predicted. How-
ever, the functional forms of these two regimes—in particu-
lar, whether they are exponential or power law in time—
were not investigated quantitatively. Nevertheless, the data
presented in this work seem consistent with a slower than

re volume iniected (time exponential decay of the density profile.
pore ! (time) In [23], an exponential output concentration profiiex)

FIG. 12. Qualitative dependence of the output concentrationNeXp(_AX) IS assumed from the Ou_tset’ whexeis the
curve (@) on the propagation velocity, anth) on the reaction ~downstream distance antd is the experimentally measured
strength. filter coefficient. The corresponding experimental data show

that A is constant at early times, and then sharply decreases

at later times. Thus the initial stage of the experiment is
sectional area of each particle is proportionakifo the av-  consistent with an exponential profile, but later the profile
erage initial tube capacitil varies asd 2. From Eq.(27), decays more slowly. 1i23], this is attributed to a “blocking
we then havey/vy~(1+d) L. Thus the output concentra- effect” in which previously deposited particles can block the
tion curve shifts to a later time for a solution with a larger further deposition of particles onto nearby available trapping
value ofd, which is consistent with the experiment and nu- SIt€s.
merical predictions iri6].

In another set of experiments, different electrolyte con- , )
centrations of the carrier fluid were used. This mainly affects As a _Iast remark, let us examine the assumption that the
the trapping ratey. For a larger trapping rate, the width of probability of encountering an open trap is proportional to

the output concentration curve, namely, the time range ovethe fraction of open traps in a pog&ec. Il B). Suppose
. p L y: g instead that one takes into account the volumetric effect that
which the output concentration changes from zero to its sat

. ) > particles far from the surface of the pore do not have the
ration value, becomes narrower. However, there is no shift i

the breakthrough time because the propagation velocity ighance to encounter a trap. Then the fraction of particles in

ind dent Th wo feat ilustrated in Fi ontact with the inner surface of a tube is proportional tg 1/
Indepencen Ofy. hese two features are rlustrated in F1g. namely, the ratio between the surface area and the volume of
12(b). This behavior again qualitatively agrees with the ex-

) ) the tube. This would lead to the interaction terms involving
periment in[6].

. . . Ty in Egs.(25) and(26) being multiplied by another factor of
It would also be interesting to study the effect of different 1/r. However, this modification does not affect the propaga-

filter grain sizes. In our model this would be accomplishedtion velocity of the front, nor the power-law feature of the

by changing the characteristic parametepf the pore size :
o . ) ; tail. Only the decay exponent changes through the steps of
distribution. In turn, this affects the invader propagation Ve'Eqs.(33)—(36) Wwith an additional factor of 1/

locity, and the output concentration curve will shift in time Our results can also provide practical guidelines for im-

accordingly. However, since the microscopic parameters W%roving the design of a filter in two aspects, namely, the

use n our m'odellmg may be coupled W'th. each ther n .exbreakthrough time and the amount of filter material used
perimental situations, different sizes of filter grains or in-

vader particles may also affect, e.g., the reaction strepgth before the breakthrough. A longer breakthrough time can be

We can incorporate such a coupling effect by extending Ou<;;1ch|eved by having a smaller filter grain size, a lower input

model to deal with these effects explicitly. For example Weconcentration, or a larger pore capacity. While these trends
can adaot the MICroOSCODIC Mo delspof gr.ticle ira iﬁ 7on may seem intuitively clear, we can quantitatively estimate

; P P P ppINg he increase in the breakthrough time through the expression
single sphere or on a plah2,8] to the tube geometry. From

h h th i h . for the propagation velocity, Eq27). When breakthrough
such an approach, we can express the reaction streng occurs, the amount of unused filter material is determined by
a function of the invader or defender diameter.

the shape of the tail in the density profile of the defenders.
According to Eq.(37), the amplitude of this tail is propor-

2. Tail of the output concentration curve tional to y~*. From this, we can quantitatively estimate the
A slowly decaying tail in the deviation of the output con- amount of filter material left unused at the breakthrough time

centration from its asymptotic value is generally observed ir?S @ function of the reaction strength.
experimentd4,6,23. This observation is in contrast to the
empirical approaches, such as that giverf@h which give

an exponential profile for the whole time range. Their pre- We thank Dr. Jysoo Lee for helpful discussions about
diction agrees with experimental observations at early timeflow field calculations. We are also grateful to ARO Grant

(b)

output concentration

3. Probability of encountering an open trap
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APPENDIX: SOLUTION OF THE HYDRODYNAMIC
DISPERSION EQUATION

We solve the master equations EG9) by the Laplace

transform method. Definék(s)zf?;’dtpk(t)e‘St and take
the Laplace transform of Eq19) to find

~_Pk—1_@
, spk—Tk_1 e (A1)

P¢ po

S 7o

Rearranging yields

po

Po _pPP Pr-1
T_O(1+Tos)— S y .

Pk
T_k(1+ TkS)— .

(A2)

We multiply the above equations for indices 0,1,2. k
together and rearrange terms yet again to obtain

¢

H (1+Tms)—p

Tk m=0

(A3)

Before taking averages, we user,=(1/s)[1-1/(1
+7,8)](1+ 7s) on the left hand side of EqA3) to get

‘ pd
Pr ngo (14 7pS)= = 1

- 1+—7'|<S) (1+ TkS). (A4)

Averaging over the residence time distributiB(r) defined
by Eq. (20), we obtain

(P = p—?
where(-) denotes an average ovB(7). Note thatB does
not depend ormm because all the,’'s are independent and
identically distributed in the large limit. For the long time
limit, we need the smals behavior ofB. Accordingly, we
expandB=1-s(7)+s%7%)--- in terms of the moments

(™

(1-B)BX, B

1+ TS> ' (A5)
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The profile of the carrier fluiddashed line in Fig. Ris
monotonically decreasing near the front, and thus can be
characterized by its first derivative, which gives a bell shaped
distribution centered at the front. We divide the derivative by
the total sum of derivativeE ,,({pPm) —{Pm-1)) = —(Po) tO
obtain the normalized probability distribution of the front,

P(k)= >[<pk 1= (P (AB)

(Po

The average position of the front is, using E45) and
the steady state solution of EQL9), (pg)=p (1),

— 1

<k>:@§k‘4 K[{(Pk-1)—(Pw]
1, -~

@5 (; K[(Pk-1) <Pk>])

_1(§; k[Bk—l_Bk])

(A7)

where the overbar means averaging oK), and £ !
the inverse Laplace transform. We use the identity
£ s P)=tF~YT'(B) for the last step. We assume a suf-
ficiently long chain of bubbles in the summations above to
prevent a finite length effect. From above, we find the propa-
gation velocity av =(7)~* [Eq. (23)].
Similarly, (k®)=(po) "= k’[{Pr-1) —(Pi)],
width of the front is

and the

1+M

() — ()22 ( < >[ r(s—g) S

which gives Eq.(24).
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