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We study a broad class of epitaxial assembly of filament networks on lattice surfaces. Over time, a scale-
free behavior emerges with a 2.5-3 power-law exponent in filament length distribution. Partitioning
between the power-law and exponential behaviors in a network can be used to find the stage and kinetic
parameters of the assembly process. To analyze real-world networks, we develop a computer program that
measures the network architecture in experimental images. Application to triaxial networks of collagen
fibrils shows quantitative agreement with our model. Our unifying approach can be used for characterizing
and controlling the network formation that is observed across biological and nonbiological systems.

DOI: 10.1103/PhysRevLett.113.025502

Fractal patterns are vast in nature [1]. Because of their
scale-free character, relevant feature sizes follow a power-
law distribution. Disparate systems exhibiting the same
power law often share the same underlying physical
feature. Characterizing systems or phenomena according
to their power-law exponent is thus an important starting
point for understanding them [2—4]. In reality, the scale-free
behavior does not continue indefinitely, for which the finite
rate of pattern formation process plays a role. Knowledge
of such limiting factors can provide additional information
about the system. Here, we apply this idea to a new class of
filament assembly process on surfaces. The growth direc-
tion of a filament is guided by the underlying substrate
lattice, and growth stops by steric encounter with other
filaments on the substrate (Fig. 1). This process is observed
in a broad range of systems, including collagens [5-8],
various f-sheet forming peptides [9-14], and organic
nanofibers [15-20]. Commonly used substrates include
mica, graphite, and KCIl, where assembly occurs either in
solution (mainly biofilaments) or via vapor deposition
(organic nanofibers). The filament network can be triaxial,
biaxial, rectangular [Figs. 1(a)-1(c)], or uniaxial, depend-
ing on the symmetry of the substrate lattice and the degree
to which nascent filaments (nuclei) can rotate on the surface
and align with the axes of the lattice [8]. Rotational motion
can be controlled, e.g., by the buffer that affects the strength
and anisotropy of the interaction between the molecule and
the substrate [8,21]. When directional bias is not strong, an
isotropic network results [Fig. 1(d)] [22-26].

In these template-directed [7,9,12] or epitaxylike
[8,10,11,14] assemblies, the molecular subunits forming
a filament are often much greater than the lattice unit cell
[8]. In the case of physisorbed films, lattice-imposed
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PACS numbers: 81.16.Fg, 81.16.Rf, 87.10.Rt, 87.16.Ka

ordering of such incommensurate structures is known as
“orientational epitaxy” [18,21,30,31]. We thus call the
directional growth of filaments on substrates orientational
linear epitaxy (OLE). Nanoscopically and chemically
defined layers generated by OLE have biomedical
[5,9,27,32] and optoelectronic [20,28] applications. While
previous studies related to OLE focus on the directional
guidance mechanism by the lattice [18,20,21,30,31], mor-
phogenesis of the network as a whole has not been
investigated in detail.
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FIG. 1 (color online). Four types of OLE networks that
have  been  experimentally  observed: (a)  Triaxial
[8-15,18,19,21,27], (b) biaxial [5,6], (c) rectangular [16,17,28],
and (d) isotropic [22-26]. (a),(b) Triaxial and biaxial form on
hexagonal lattices, notably on mica. (c) Rectangular forms on cubic
lattices such as KCIl. (d) Istotropic forms in the absence of
orientational bias. See also Supplemental Material, videos [29].
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In building a model of OLE, as similar networks form in
diverse systems, we keep only essential features as gen-
erally done in models of nonequilibrium statistical mechan-
ics: Filaments nucleate with rate n (number of nucleation
events per unit time in a square substrate of width w), at
which the growth direction is randomly assigned based on
the orientational symmetry of the system. After nucleation,
filaments grow with rate g (number of subunits of size ¢
added to the end of a filament per unit time). Growth stops
when a filament end encounters another filament. Figure 1
shows examples generated with n=¢g=w =1, and
0 =0.002, for four different types of orientational
symmetry observed in experiments (see also videos in
the Supplemental Material [29]).

In reality, filament nucleation may result from inter-
actions among surface-diffusing monomers or multimers,
details of which are lumped into the nucleation rate n.
Similarly, although filament elongation is expected to occur
mainly by subunit addition, other pathways such as
annealing between growing filaments may also contribute.
Such details are system dependent, whose net effect is
parametrized by the growth rate ¢g. So a subunit in our
model does not necessarily correspond to an actual mol-
ecule but instead it represents a filament segment by which
the kinetic parameters are defined. Our model also assumes
an infinite reservoir of subunits available for nucleation and
filament growth. In the case when a finite amount of
subunits are used, only the formation of short filaments at
later stages will be affected by depletion whereas most parts
of the network, as in Fig. 1, that grew while there were
abundant subunits, remain nearly intact. To a first approxi-
mation, our model thus captures key elements of the OLE
process for which there can be a wide range of experimental
scenarios.

The OLE process can be divided conceptually into three
stages: (i) early nucleation where filaments grow on mostly
empty substrate, (ii) encounters among the early-formed
filaments, and (iii) self-similar network formation. Stage (i)
lasts longer for smaller n (sparser filaments) and smaller g
(slower elongation). In stage (ii), filaments are still sparsely
distributed and growth terminates mostly by random
encounters. In stage (iii), the substrate is divided into
polygons possessing a given orientational symmetry, which
are divided by new filaments into progressively smaller
ones in a roughly self-similar manner.

We use a mean-field theory (MFT) for stage (i) since
filaments grow independently. Let L be the filament length
(number of subunits). The master equation for its distri-
bution P; () at time ¢ is

Plzn_gpl’

Pp=g(P,_y—Pr), (L>1) (1)

Here, n describes the increase in P by nucleation. The gain
(gP;_1) and loss (—gP;) terms are due to subunit addition.

The solution to Eq. (1) is
(Supplemental Material [29])

PL(1) = erfe (L\/;?gt’) 2)

where erfc(x) = (2/y/x) [& e™%ds is the complementary
error function. Equation (2) saturates to (n/g) for short
filaments (L < gt), and the growing front (L ~ gf) has
speed g. Stochastic simulation without steric interaction
between filaments agrees well with Eq. (2) (Supplemental
Material, Fig. S.1 [29]).

To consider encounters among filaments in stage (ii), we
add second-order interaction terms:

given asymptotically

Py =n—-(g+aS)P,

PL=gP i —(g+aS)P, (L>1), (3)
where a is the encounter rate and S=)_, P, is the
total filament number density. Equation (3) has an expo-
nentially distributed steady state solution (Supplemental
Material [29])

P, = " ~Lin(1+yna/g) (4)
Y

The exponential nature of the distribution remains even if
we use the total subunit number density (total length of
filaments) M =) LP; instead of S in Eq. (3)
(Supplemental Material [29]).

Filaments interact more strongly in stage (iii), SO we use
stochastic simulation. Among the model parameters, we fix
n =1 and vary ¢ (the choice for n only affects the time
scale). Also, for better statistics, we use a small subunit size
6 = 10~ while w = 1 (Fig. 2). After the MFT-like growth
of initially nucleated filaments [Fig. 2(a), t < 1200], shorter
filaments start to increase in number as their growth
becomes limited [Fig. 2(a), ¢ = 2000]. Similar to Eq. (4),
P, for long filaments is exponential, e % [Fig. 2(b), inset].
Later on, P; becomes a power law as shorter filaments
progressively fill smaller areas with similar geometric
features determined by the orientational symmetry of the
network (P, ~L~"). The power law extends to smaller
lengths with greater ¢ or g [dashed arrows in Figs. 2(a)
and 2(b)].

Other types of networks in Figs. 1(b)-1(d) behave
similarly although the time to reach the self-similar regime
differs (Supplemental Material, Fig. S.2 [29]). The power
law exponent b appears universal, about 2.5 for smaller
lengths and 3 for longer lengths before the exponential
distribution [Fig. 2(c); 4 <log(L) < 7]. Interestingly, a
similar power-law exponent has been observed in planar
fragmentation [33,34]. Regarding each filament in our
model as a crack on a two-dimensional plate, OLE has
features analogous to fragmentation [34,35]. The fractal
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FIG. 2 (color online).

Length distribution of OLE networks. Measurements were made over 100-500 runs in each case. (a) Time

evolution of P; for the triaxial network (¢ = 1). For # < 1200 (early nucleation regime), P; follows the MFT solution, Eq. (2). For
example, the front of P; moves with speed g = 1, so that at ¢ = 400, it is located at log(400) = 6.0. As filaments encounter (¢ = 2000),
P; becomes “frozen,” starting from longer filaments and, subsequently, to shorter ones (dashed arrows). (b) Near-steady state profiles at
t = 4 x 10°. Dependence of P; on g (dashed arrows) is analogous to the ¢ dependence in (a). Inset: log-normal plot showing exponential
distribution of longer filaments. (c) Local slopes of the curves in (b). For the intermediate range of L where the power law holds,
b = 2.5 — 3. The power law behavior becomes more prominent with greater g as this is similar to a longer-time case. Similar behaviors

are observed for the networks in Figs. 1(b)—(d) (Supplemental Material, Fig. S.2 [29]). (d) Log-log plot of k vs g, indicating k ~ g

-1/3

across different networks. Numbers in legends are slopes of linear fits. The prefactor in this relation (k at g = 1) correlates with the
propensity for encounter between filaments, which is the greatest for the isotropic network, followed by triaxial, and the smallest for

biaxial and rectangular networks that behave very similarly.

dimension D of a fragmentation network is related to b by
b = D + 1 [34]. Since b approaches 3 with t or g, D — 2.
This means that, for length scales much greater than those
of empty areas available for filament growth, the network
effectively fills the whole substrate, becoming a two-
dimensional compact object [3].

The inverse length k of the exponential decay follows
another universal power law, k ~ g~'/3 [Fig. 2(d)]. To see if
similar behavior is observed without steric interaction
between filaments, we modified the stochastic model. As
for MFT, filaments do not interact in space, but instead they
are capped with probability 1 —e™%5 each time when a
subunit attempts to add to an uncapped filament end. The
capping probability increases with S and a, as in Eq. (3).
This case has b =2, consistent with the relation
b = D + 1, since without steric interaction, the model is
one-dimensional (Supplemental Material, Fig. S.3 [29]).
Furthermore, longer filaments show an exponential decay
with k ~ g~'/2 (Supplemental Material, Fig. S.3 [29]).
Comparing with Fig. 2(d), it appears that k~ g~'/%.
Further studies are needed to test the validity of this
relation.

To apply our model to real-world networks, we developed
a Computer-Aided Feature Extraction (CAFE) program
that identifies individual filaments in experimental images,
and applied CAFE to an atomic force microscopy (AFM)
image of a triaxial network of collagen fibrils (Figs. 3(a)
and 3(b); Supplemental Material [29]). While recognizing all
visible filaments without any error is difficult due to the
inherent conformational variation of collagen fibrils and
various noises, CAFE recognizes the majority of them. The
resulting filament orientational distribution P, has three
peaks separated by ~60°, reflecting the hexagonal phlogopite

mica lattice [Fig. 3(c)]. Asymmetry in P, is likely caused by
the distortion of the surface-exposed lattice [36]. A power
law profile was observed in P; with exponent b = 2.61
[Fig. 3(d), solid circles]. While the exponent agrees well
with that of our stochastic model, the power law spans
only a narrow range of L and the crossover to exponential
distribution is unclear. To further elucidate the condition in
which the network formed, we sought simulation parameters
that recapitulate the network in Fig. 3(a). Filament directions
were selected with probability proportional to the peaks
of Py in Fig. 3(c). CAFE identified 2886 filaments of length
greater than 1 ym (about 10 pixels; filaments shorter than
this were ignored due to their low aspect ratio). Simulations
were thus run until there were approximately 3000 filaments
longer than 1 ym. To implement dimensional quantities,
the system size was set to w = 65 (um) that matches the
AFM image [Fig. 3(a)]. We used n = 5 (this choice only
affects the relevant time scale; see below) and varied g until
the resulting P; agrees with that from CAFE, which yielded
g=0.25-0.75 [Fig. 3(d)]. An example simulation at
g = 0.50 indeed resembles the AFM image [Fig. 3(e)].

In simulation, the total number of filaments including
those shorter than 1 ym was about 4500. As Fig. 3(a) was
taken after 5 h incubation, 1/3 min is an appropriate time
unit for our model (time for nucleating 5 filaments). With a
50-nm subunit size (o) used in our simulation, the elonga-
tion rate is estimated as 50g = 38-113 (nm/ min). Without
interruption, a filament would reach 22.7 ym (at
75.5 nm/ min) after 5 h, which is above the maximum
observed in AFM, 18.4 um, supporting the consistency of
our analysis (the maximum length with steric interruption
should be shorter than 22.7 um). In dimensionless terms, if
we scale the system, subunit sizes, and time to match those
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FIG. 3 (color online). Analysis of a triaxial collagen network. (a) AFM scan. (b) Corresponding in silico network extracted via CAFE.
Filaments are individually recognized and colored randomly. (c) Filament angle distribution. Angle € is measured relative to the
horizontal direction in (a). The asymmetry in Py is visible in (a). (d) Length distribution. Solid circle: From the network in (b). Dashed
and solid lines: stochastic simulation with g = 0.25 and 0.75, respectively (each averaged over 50 runs). (e) An example simulation with
g = 0.50, which looks qualitatively similar to the AFM image in (a).

in Fig. 2, the corresponding parameters are n =1, play a major role, which supports our assumption of
g=10.39—1.2, and ¢t = 4500. At this time, a system with constant filament nucleation and growth rates.
g = 1 [Fig. 2(a)] will be undergoing transition between the For comparison, we generated another network using

early encounter to self-similar regimes so that the transition  half the collagen concentration (2.5 ug/ml) while keeping
between exponential and power law in P; is not clearly  other conditions the same. A similar analysis combining
established, as observed in Fig. 3(d). The semibiaxial CAFE and stochastic simulation reveals changes in the
character of the collagen network [Fig. 3(c)] may also  filament orientational symmetry and reduction in the
contribute to the slow convergence to the self-similar  elongation rate to 30—90 nm/min (Supplemental
regime due to a lower chance of encounter between  Material, Fig. S.5 [29]), demonstrating the sensitivity of
filaments (Supplemental Material, Fig. S.2 [29]). our analysis.

In Fig. 3(b), the total filament length in the network is Question arises regarding whether real-world OLE net-
9.9 mm. Since a collagen fibril in the AFM image is  works can possess a clear self-similar regime. In principle,
approximately 3-nm thick [5,8] and about 100-nm wide, although this can be achieved with a prolonged incubation
with a 1.5-nm diameter and 300-nm length for a single  time and possibly replenishing molecules in the buffer to

hydrated collagen molecule, a 65 x 65 um? network con-  prevent depletion, the finite size of a molecule limits the
sists of ~5.6 x 10 collagen molecules. If we assume the  smallest length scale that the network can reach. In the case
same level of adsorption for the entire ~1 cm? mica disc,  of collagen, a single molecule is 300-nm long, which is

about 1.3 x 10'!" collagen molecules will be in fibrils. By  already comparable to the 1-um length of the shortest fibril
comparison, a 50-ul aliquot of 5-ug/ml collagen solution  identified in Fig. 3. An alternative approach would be to
used in experiment contains 5.5 x 10'! collagen molecules  increase the growth rate g compared to the nucleation rate n
(molecular weight = 272 kDa). Therefore, depletion of [Fig. 2(c)]. For a given type of molecule, however, since
collagen monomers during the experiment is unlikely to  both rates are determined by intermolecular interaction and
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also interaction with the substrate, it would be difficult to
control n and g independently. Thus, while the patterns as
shown in Fig. 1 are universally observed, partitioning
between exponential and self-similar regimes in the
long-time limit may be a characteristic for a given system.
In summary, our model of OLE provides a general
framework for understanding sterically limited filament
assembly on surfaces. The finite assembly kinetics leaves a
characteristic signature in network morphology as seen by a
transition from exponential to universal power-law behav-
ior. Together with CAFE (cf., Figs. 3 and S.5), our model
can detect the subtle influence of the experimental con-
dition on the network, which will be useful for analyzing a
wide range of experimental systems exhibiting OLE.

We thank Sidney Redner for helpful discussion about
fragmentation theory. We used the Texas A&M Materials
Characterization Facility for AFM imaging.
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S.1 Mean-field theory of independently growing filaments

We solve Eq. 1 with the initial condition P;, = 0 for all L at time ¢t = 0. Let the total number of filaments
be S(t) = >-7~, Pr(t). Summing Eq. 1 over L leads to S = nt, which simply indicates that S increases by
filament nucleation. The total number of subunits is M (t) = > 7., LPr(t). Multiplying L to respective
terms in Eq. 1, and summing yields M = n + ¢S, so that M = nt + %tQ.

Eq. 1 can be solved for individual Pp, by using the generating function G(s,t) = >.7°, sLPL(t) (s is
a continuous variable). Once G(s,t) is found, we can get Pr(t) = %%LTLC’W s=0. Multiplying the L-term in

Eq. 1 by s& and summing, we get G = sn + g(s — 1)G, hence
sn

e ), (51

G(s,t) =
One can verify G(1,t) = S(t), and %G(s, t)]s=1 = M(t). To get Pr(t), we change variable for G tou = s—1
in Eq. S.1, and use the notation h(u) = 1+ 1/u. We also rescale time by the growth rate, t’ = tg, and the
nucleation rate, n’ = n/g:

Gu,t') = n'h(u) (™ — 1) (5.2)
With u, we have Py, = ﬁgﬁﬂu:_l. In Eq. S.2, note that
h(—=1) =0
oth
These give
o t'u t'u 9 g
o ( (u) ) = ((% +t’> h(w)
I L, gbm
c Z::O m!(L —m)!"  Qul—m
L1
u=— _y L .
= "> mt’ . (S.4)
m=0
When we set u = —1 in the above summation, the term m = L does not contribute (h(—1) = 0), which
was dropped in the last line of Eq. S.4. Restoring ¢ and g, we get
n - (g™
Pr(t)=—[1—-e9) 22 :
=2 (1 32 07 9
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Eq. S.5 can be rewritten as

n _ (gt)™
= —¢ 9t Z e (S.6)
g m=L )

For L > 1, we can take continuum limit by applying Stirling’s formula, logm! ~ mlogm — m, to each
term on the right hand side of Eq. S.6:

tm
ln% ~mlngt —mlnm+m
m!
(m — gt)°
~gt— —— S.7
g ot (5.7)

which yields Eq. 2:

| 2

Pr(t)

/ dme— (m—gt)?/2gt
\/ 27Tgt

= ™ et (@%t) (S.8)

The prefactor in Eq. S.8 ensures the steady state value Pr(t — oo) = 7 which can be seen by setting

Py, =0in Eq. 1. To test this result, we disabled interaction between filaments or with the boundary in
our stochastic simulation and carried out 1000 runs for each combination of n and g. The resulting length
distribution at different times match well with Eq. S.8 (Fig. S.1).

S.2 Mean-field theory with interaction between filaments

This case is described by Eq. 3. Adding the equations from L = 1 to oo gives the rate equation for the
total filament number density:

S =n—aS? (S.9)

which has the solution

S(t) = \/Z tanh([na]'/?t). (S.10)

In steady state, S = /n/a. Inserting this into Eq. 3 gives

L—1
P = ng _ ﬁe—Lln(l-s-\/%/g)’ (S.11)

(g+vna)l g
which is Eq. 4.

Instead of S in Eq. 3, if the rate of encounter among filaments is proportional to the total number of
subunits M = )", LPy, following a procedure similar to that in Sec. S.1,

M =n+gS — aM?

S=n—aMS (S.12)
The steady-state solution My, = M (t — o0) satisfies
aj; =aM?2 —n. (S.13)

For any positive values of n g, and a, there is a unique solution for M., > 0. Replacing S in Eq. 3 with
M. and setting Pr, = 0 yields P, = 2 _Lln(1+“M°0/ 9), which is again exponential.
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S.3 Computer-Aided Feature Extraction (CAFE)

We made the CAFE program to be script-based so that it is applicable to the analysis of other types
of images having different features without compiling the source code. CAFE was written in the C++
language. The output of CAFE is written in the CHARMM coordinate file format [1, 2] so that existing
molecular rendering softwares can be used for visualizing the network. Figs. 3b and S.5b were rendered
using VMD [3]. Below we outline the main concepts by using a small image as an example (Fig. S.4). A
detailed explanation of individual algorithms will be published elsewhere.

S.3.1 Bead assignment

This is the initial filtering of the pixel data (Fig. S.4a to Fig. S.4b). A simple binary thresholding approach
does not yield desirable outcome in cases when pixel intensities of filaments vary across the image or when
filaments are densely populated. We thus developed the following local adaptive thresholding method:

1. Use a small window of a given size to scan across the image, translated by one pixel at a time. In
each step during the scan, calculate the average pixel intensity I, standard deviation o (1), and the
‘center of mass’ r.p, of the window weighted by pixel intensity.

2. Add a bead to r.y, if the following three conditions are met:

® r., lies within 1 pixel from the geometrical center ry of the window.
e The pixel intensity at rq is greater than I + ho(I), where h is a preset threshold.

e [ is greater than a low intensity cutoff I.

In this study, we used a 6-pixel wide square window, h = 0.3, and Iy = 20. By comparison, the
original AFM images were 677-pixel wide and the maximum pixel intensity was 128.

3. If a bead is assigned to a window, pixels within that window are not considered again for assigning
other beads in subsequent scans.

S.3.2 Bond assignment

Bonds are assigned between beads that are closer than a cutoff distance R.. For a given image, R, is
determined by the width of a typical filament. We used R. = 4.5 pixels in this study. Non-integer values
are allowed because the bead’s position (intensity-weighted center of mass of a window during the bead
assignment step) is given as real numbers (Fig. S.4c).

S.3.3 Constructing the filament network

Whereas bonds and beads as assigned above are simply coarse-grained representation of the pixel data,
identifying filaments requires extracting topological information from the image, which is the most chal-
lenging part of the CAFE procedure. Our main strategy is progressive refinement of the network, to
work on regions where filaments are readily recognized, then use the orientation and persistence of these
filaments to analyze the remaining regions.

1. Bond clean-up. In CAFE, a filament is assigned to a linear chain of beads connected by single bonds.
In the initially constructed bond-bead network (Fig. S.4c), a bead can form bonds with multiple
surrounding beads. If some of these bonds have angles less than a cutoff (7 in this study), only the
shortest bond is kept. Also, if three beads connected by bonds are straight (two bonds connecting the
beads form an angle greater than %77), all other bonds to the middle bead are removed. Procedures
such as these convert regions with relatively isolated filaments in the original image into linear chains

of beads, which are identified as filaments, as in Fig. S.4d.
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2. Filament extension. Due to noises and conformational variation, a filament in the original image may
be recognized as multiple filament segments in the above step. We thus connect pairs of filaments
whose ends are closer than a certain cutoff distance (on the order of R.) and also are similar in slope.
Likewise, an isolated bead is connected to the end of a filament if it is located within a cutoff distance
from the end and lies close to the local extension line of the filament’s end. After joining filaments
and adding beads, filaments are smoothed to get rid of local kinks or wiggles. The filament extension
procedure is applied multiple times using different values of cutoffs (Fig. S.4e).

3. Cluster processing. The above steps do not work well on regions where, e.g., filaments are very closely
distributed or several filaments converge (thin blue bonds in Fig. S.4d—f). We call such regions as
clusters. In most cases, within a cluster, beads are spread over an area such as the one on the upper
right side of Fig. S.4e. In this case, local connectivity among beads provides little information about
the organization of filaments within the cluster. Thus, among the filaments identified above, those
that surround the cluster are utilized. Similar to the case for joining two closely separated filaments,
if two filaments surrounding a cluster closely match when extended, they are joined through the
cluster, which can be most clearly seen by comparing the upper right sides of Fig. S.4e and Fig. S.4f.
The remaining clusters after this procedure are smaller, and similar filament assignment procedures
are applied to them. The final network is shown in Fig. S.4g.

An overlay of the original image and the final network from CAFE (Fig. S.4h) shows that, although
most filaments are identified, there are occasional mismatches. As long as the mismatches are not a large
fraction of the network, they do not affect our measurement in any major way.

S.4 Experimental method

Collagen networks were formed based on our previously developed protocol [4]. Briefly, type-I collagen
from rat tail tendon (BD Biosciences) was diluted to 5 pg/ml in a buffer containing 200 mM KCl, 30 mM
NagHPOy, and 10 mM KHoPO,4. Immediately after preparing the solution, a 50-ul aliquot was deposited
on freshly cleaved phlogopite mica (a generous gift from Frank Balzer at University of Southern Denmark).
During incubation, mica was placed in a moisture-controlled chamber to prevent drying. After 5 h, the
sample was gently rinsed 4 times each with 70-ul deionized water, then dried. Drying does not affect the
network formed on mica [4]. For imaging, we used the Bruker Dimension Icon AFM in soft tapping mode.

S.5 Comparative analysis of triaxial collagen networks formed under different exper-
imental conditions

We tested whether CAFE can distinguish between networks formed under slightly different experimental
conditions. Fig. 3a was obtained with 5 ug/ml collagen solution, whereas Fig. S.5a was with 2.5 pug/ml. In
the latter case, collagen fibrils appear slightly more aligned, but otherwise it is difficult to find any major
difference between the two images by visual inspection only. They are both 677 pixels on a side. Different
scan sizes (65 pm in Fig. 3a and 51 pm in Fig. S.5a) were determined during AFM imaging while searching
for clean areas on mica that are relatively free of debris or undissolved clusters.

We applied CAFE to construct the corresponding network (Fig. S.5b). The resulting orientational
distribution has three peaks at the same angles as before (Fig. 3¢ vs. Fig. S.5c), but the location of the
minor peak moved from 73.8° to —45.0°. Since the phlogopite mica is cleaved in each experiment, a newly
exposed lattice surface may have different direction of distortion [5]. Similar to Fig. 3, the two major
orientations (16.2° and 73.8°) visually match with those in Fig. S.5a. In the measured filament length
distribution Py, its slope in log-log plot around the middle of the distribution is —2.68, again consistent
with our model (Fig. S.5d).

There were 2576 filaments of length greater than 1 ym. Although this is smaller than the corresponding
number (2886) in Fig. 3, considering difference in scan sizes, the filament number density per unit area is
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actually higher, 0.99 filaments/um?, while Fig. 3a has 0.68 filaments/um?. At first, a higher filament density
under a lower collagen concentration appears puzzling. However, the lower concentration reduces the
filament growth rate, thus it may allow more filaments to nucleate in a given area. To test this possibility,
we carried out stochastic simulations. To match with Fig. S.5a, we used a system size 51x51 pm?, and
correspondingly rescaled the nucleation rate to n = 5 x (51/65)? = 3.08. This makes the two simulations
in Fig. 3 and Fig. S.5 to have the same nucleation rate per unit area. The orientation of a nucleating
filament was selected with probability proportional to the peak values in Py (Fig. S.5¢). Simulations were
run until there were more than about 2500 filaments longer than 1 pm. Good agreement with experiment
was achieved for g = 0.15 ~ 0.45, which indeed reveals a lower growth rate than the case with a higher
collagen concentration (Fig. 3d wvs. Fig. S.5d). An example of the simulated network with g = 0.25 again
resembles the AFM image (Fig. S.5e).

Using these results, as for Fig. 3, we can estimate the time scale and elongation rate in physical units.
In our simulation, there were a total of 3700 filaments (including those with length less than 1 ym). Since
the incubation time is 5 h (300 min), the time unit for the simulation is 29 x 3.08 = 0.25 (min). For
o = 50 nm, the elongation rate is 50¢/0.25 ~ 30 ~ 90 (nm/min), which is indeed lower than the case with
5 pg/ml collagen solution (38~113 nm/min). In order to increase the accuracy of the estimate, taking more
AFM images at different time points would be helpful. On the other hand, in situ measurement of the
elongation process by AFM is difficult due to the slow scan rate. Also note that Figs. 3d and S.5d are not
simple fits, but matching of data by actual simulation. Incrementally varying g and carrying out simulation
in each case to minimize the root-mean-square deviation between experimental data and simulation would
provide a better estimate for g. However, the analyses presented here should be sufficient for the purpose
of demonstration.
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Figure S.1: Comparison between stochastic simulations of independently growing filaments and mean-field theory.
Symbols: Histogram of filament lengths averaged over 1000 runs for each case. Lines: Corresponding plots of Eq. 2,
at t = 100 (solid lines), 300 (dashed), and 500 (dotted). The plateau of the distribution follows the steady-state

value g, and its growing front is located at gt.
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Figure S.2: Length distribution in stochastic simulations of (a) biaxial, (b) rectangular, and (c) isotropic networks.
All model parameters are the same as in Fig. 2 except in filament orientations. Measurements were made at ¢ = 4x10°,
averaged over 150 to 600 independent runs for each g. Lower panels are local slopes of the log-log plots. Compared to
Fig. 2, the range of L where power law holds differs. For biaxial and rectangular networks, the power law exponent
b changes almost continuously, reflecting the fact that confinement of filaments is not as strong as in the triaxial
network, and transition from exponential to power-law in the length distribution is not as clear. For greater g (faster
growth rate), b varies more slowly with L, and the range of L in which b lies between 2.5 and 3 expands. Considering
the similarity between the dependence on t and g (Fig. 2a,b), it is expected that the power law behavior will become
clearer at later times. However, for longer simulation, a larger system or a smaller subunit size need to be used
to avoid finite-size effect. In (c), b is close to 3 for log(L) between 4 and 6. As discussed in the paper, the fractal
dimension is D = b — 1 ~ 2, suggesting that the network appears to be a compact 2-dimensional object. However, a
narrow region of log(L) right before the exponential distribution has b ~ 2, indicating that the network behaves like
a 1-dimensional system. The range of L over which this occurs shrinks with g. The origin for this behavior of the
isotropic network is unclear.
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Figure S.3: Results for a modified stochastic model without filament interaction but a growing end of a filament
capped instead with probability 1 — e~®% (S: total number of filaments). Measurements were made at t = 1 x 104,
and results are averaged between 500-1000 runs. Other simulation parameters are the same as in Fig. 2. (a)—(c).
Py, in log-log scale (top row) and its local slope (bottom row) for three different values of a: (a) a = 1 x 107°, (b)
a=2x107" and (c) a =5 x 107°. The local slope stays around —2 for the intermediate range of L, indicating a
1-dimensional nature of the process in the absence of steric interaction. Inset: P, in log-normal scale. (d) Inverse
of the decay length k in the exponential distribution as a function of g. Numbers in legends are slopes of linear fits
(cf., Fig 2d). The prefactor of the relation (k at g = 1) increases with a, as the characteristic length scale of the
exponential decay decreases with higher capping probability. This behavior is similar to the case in Fig. 2d where
different orientational symmetry of the network affects the likelihood of encounter between filaments.
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Figure S.4: Snapshots of intermediate steps of CAFE applied to a 128-pixel wide portion of Fig. 3. (a) Original
image. (b) Bead assignment. (c¢) Bond assignment. (d) Initial identification of filaments. Colors are randomly
assigned to identified filaments. Regions where filaments are not identified (clusters), are in thin blue bonds. (e)
Filament extension. Clusters reduce in size or disappear as a result. (f) An intermediate step during cluster
processing. (g) Final network. Residual beads and bonds that are not part of any filament are excluded from our
analysis (thin blue dots and bonds). (h) Overlay of the original image (a) and the final network (g).
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(b) Network identified by CAFE. (c¢) Filament angle distribution.
Length distribution. Compared to Fig. 3d, simulations with ¢ = 0.15 ~ 0.45 better match the data, reflecting a

AFM image.

(a)

Figure S.5: Analysis of a collagen network formed at 2.5-ug/ml concentration. Other experimental conditions are

the same as in Fig. 3a.

slower growth rate with lower collagen concentration. Distributions for g = 0.25 and 0.75 are shown for comparison.

(e) A snapshot of the simulation with g = 0.25.
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